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The detailed fluctuation theorem is derived. The basic assumptions are phase space incompressibility
(Liouville’s theorem) and time reversibility on the microscopic level. The theorem relates the conditional
probability to end up in a mesoscopic stateGB at time tB, starting fromGA at time tA, to the time-reversed
process. The ratio of these two probability densities is related to the entropy difference of the two mesoscopic
states. The fluctuation theorem remains valid even far from equilibrium as long as the local equilibrium
condition is obeyed. It is shown that the theorem imposes constraints on the form mesoscopic equations can
take. For stochastic differential equations a generalized kinetic form is derived. The fluctuation theorem can be
used to derive thermodynamically consistent simulation techniques. At the end of this paper the relation with
the GENERIC formalism is discussed.
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I. INTRODUCTION

The (steady-state) fluctuation theorem is a relation for the
probability density of measuring a certain average entropy
production in a nonequilibrium steady-state experiment. It
states that

pss̄d
ps− s̄d

= expss̄Dt/kBd s1d

for Dt large enough. Herepss̄d is the probability density of
measuring an average entropy productions̄ over a timeDt.
The fluctuation theorem is valid in the limitDt→0. This
theorem is special because it is believed to be valid not only
for the near-equilibrium situations, but also in the far from
equilibrium stationary situations. It illustrates that the second
law of thermodynamics is sometimes violated, because the
probability of negative entropy production is finite when
there is positive entropy production. On the other hand, it
illustrates that the probability for measuring positive entropy
production is exponentially more likely than negative en-
tropy production.

Equation(1) was first found by Evans, Cohen, and Mor-
riss [1] on the grounds of theoretical considerations and con-
firmed to be obeyed by a simulation of thermostated particles
in a shear flow. It was put on a more rigorous footing by
Evans and Searles[2] and Gallavotti and Cohen[3,4]. The
theoretical considerations in these papers, such as the Sinai-
Rowen-Bowen measures, are taken from the field of chaotic
dynamics(see[5]). A review on the fluctuation theorem, in-
cluding numerical and experimental verification, can be
found in [6].

Besides the steady-state fluctuation theorem also transient
fluctuation theorems have been derived[6–10]. In this paper
I also give a derivation of a transient fluctuation theorem. My
approach is closest related to those of Jarzynski[9] and Maes

and Netočný [8]. The detailed fluctuation theorem derived
here gives a relation for the conditional probability densities
to end up in a(mesoscopic) stateGB at time tB when the
system starts out in stateGA at time tA. The probability den-
sity is related to that of the time-reversed process. This kind
of relation can be called a detailed fluctuation theorem since
it generalizes the detailed balance condition.

The derivation is straightforward. The main ingredients
are Liouville’s theorem—i.e., conservation of microscopic
phase space volume during time evolution—and micro-
reversibility. A mesoscopic state is defined as an ensemble of
microscopic states. The ratio of the conditional probabilities
for the forward and time-reversed process is related to the
entropy difference of the initial and final states. The defini-
tion we use for the mesoscopic entropy of a mesoscopic state
is essentially a Boltzmann entropy. The same definition is
used in, for example, the projection operator theory of
Zwanzig [11] and the GENERIC formalism of Grmela and
Öttinger [12,13] (GENERIC is the acronym for the general
equation for the nonequilibrium reversible-irreversible
coupling).

It will be argued that in coarse-grained theories the de-
tailed fluctuation theorem remains valid, although Liouville’s
theorem itself is no longer valid. Next, I will show that this
theorem imposes constraints on the equations that describe
the mesoscopic dynamics. Specifically I will show that,
when using stochastic differential equations for the model-
ing, the constraints give equations of the form of the GE-
NERIC formalism. Since the detailed fluctuation theorem re-
lates mesoscopic states separated in time, it can be a valuable
tool for developing simulation algorithms.

One of the goals of the present paper is to create a bridge
between two approaches to nonequilibrium thermodynamics:
the fluctuation-theorem approach and the GENERIC ap-
proach. Two communities seem to have developed similar
results without much interaction. The connection of the de-
tailed fluctuation theorem to the GENERIC formalism will
be discussed more extensively in the final discussion section.*Electronic address: e.a.j.f.peters@tue.nl
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II. DERIVATION OF THE FLUCTUATION THEOREM

Consider a mesoscopic system described by a statesG.
The phase space is of too low a dimension to fully specify
the microscopic state of the system. The mesoscopic stateG
labels a subspace in the microscopic phase space. As an ex-
ample let us choose one componentGi to represent the total
momentum of a blob of particles. The corresponding micro-
scopic subspace is the union of all points in microscopic
phase space for which the total momenta of the blob have the
specified total momentumGi. The full mesoscopic stateG
=sG1,… ,Gnd corresponds to the intersection of the micro-
scopic subspaces corresponding to the specific values for
G1,… ,Gn. If one considers a neighborhood around stateG in
mesoscopic space, this corresponds to a region in micro-
scopic space. The volume in microscopic space of this region
is

dV = dG expfSsGd/kBg, s2d

wheredG denotes the volume of the the mesoscopic space
that is occupied. This equation defines the entropySsGd of
the mesoscopic stateG. The constantkB is the Boltzmann
constant. Note that the entropy as defined in this way is,
partly, a coordinate-dependent definition. If one changes the
parametrization of the mesoscopic space fromG to G8, the
entropy will transform as

S8sG8d = SsGd + kBln detS ] G8

] G
D . s3d

The notion of a mesoscopic state is useful when the evo-
lution of the mesoscopic quantity is a slow variable com-
pared to the time evolution within the microscopic region
defined by it. In this case, during a short enough time inter-
val, much of the microscopic space corresponding toG has
been explored while the value ofG itself has changed only a
little. Assuming ergodicity in the microscopic subspace, the
mesoscopic state is well described by assuming that all mi-
croscopic states inG are equally likely to occur.

Now let us consider two timestA andtB and two statesGA
andGB. Let us assume that at timetA the system is prepared
in an ensemble of microstates corresponding to a neighbor-
hood of volumedGA around the mesoscopic stateGA. All
points in the microscopic subspace will be assumed to have
the same statistical weight. The total volume of microscopic
phase space isdGAexpfSsGAd /kBg. Let psGB,tBuGA,tAd be the
conditional probability density that a microstate, which, at
time tA, is an element of the ensemble corresponding to
mesostateGA, after evolution to timetB ends up in stateGB.
The conditional probabilitypsGB,tBuGA,tAddGB is the frac-
tion of the original microspace volume—i.e.,dGA
3expfSsGAd /kBg—that ends up in the region in microscopic
space defined by a neighborhood around the meso-
scopic phaseGB with volume dGB. If we definedVoverlap as
the overlap between the microscopic volume of the volume
corresponding to the region with volumedGA around GA
(evolved to timetB) and the region aroundGB, then

psGB,tBuGA,tAddGB <
dVoverlap

dGAexpfSsGAd/kBg
. s4d

Here the equality is approached whendGA anddGB approach
zero. Alternatively we can consider stateGB at time tB and
determine to which subspace of microscopic space it corre-
sponds at timetA. The overlap between this subspace and the
one corresponding toGA is characterized by the conditional
probability densitypsGA,tAuGB,tBd:

psGA,tAuGB,tBddGA <
dṼoverlap

dGBexpfSsGBd/kBg
. s5d

HeredṼoverlap is the volume of the overlap region. The over-
lap region of(the region around) GA evolved totB with (the
region around) GB and that ofGB evolved to tA with GA
correspond to each other. This is illustrated in Fig. 1. Due to
Liouville’s theorem—i.e., the fact that the volume of micro-
scopic phase space is conserved—the microscopic volume of
the overlap region does not change with time. This means
that in both expressions for psGB,tBuGA,tAd and
psGA,tAuGB,tBd the overlap volumes are equal. From the

equalitydṼoverlap=dVoverlap one finds that

FIG. 1. The upper picture shows the microscopic time evolution
of the region of microstates corresponding to a neighborhood
around a mesoscopic stateGA. The solid black regions are the over-
lap of the evolved state with(a neighborhood around) the meso-
scopic stateGB. The gray subdomains of the original stateGA are
the corresponding states tracked backward to timetA. The lower
picture shows the microscopic evolution ofGB tracked backward in
time to tA. The black regions are the overlap between this state and
stateGA. From microreversibility we conclude that the gray and
black regions in the upper and lower figures at a fixed time are the
same parts of microscopic space. From Liouville’s theorem we con-
clude that the volumes of the gray and black regions on the left- and
right-hand sides are equal. Combining these two observations gives
that the volumes of the black regions in the lower left figure and the
upper-right figure are equal. This elementary observation results
into the fluctuation theorem.
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psGB,tBuGA,tAd = exphfSsGBd − SsGAdg/kBjpsGA,tAuGB,tBd.

s6d

This is the detailed fluctuation theorem.
For many purposes it is more convenient to put the initial

time before the final time. This can be achieved by exploiting
the time reversibility of the microscopic system. When ap-
plying the time reversal operator the arrow of time and all
microscopic rates, such as momenta, change sign. The opera-
tion is an operation working on the microscopic space. On
the mesoscopic space it is only well defined when the micro-
scopic subspace corresponding to a stateG is transformed
into a subspace that corresponds to a single mesoscopic state.
We will assume that the mesoscopic states are chosen such
that this is the case. In this paper the time-reversed state
corresponding toG will be written asG* . Since the micro-
scopic time-reversal operation leaves the volume of phase
space invariant, the one-on-one relation also implies[simi-
larly to Eq. (3)] that

expfSsGd/kBg = expfSsG*d/kBgdets] G* /] Gd. s7d

For the conditional transformation of conditional probabili-
ties microreversibility implies that

psGA,tAuGB,tBd = psGA
* ,tA

* uGB
* ,tB

* ddets] GA
* /] GAd. s8d

Using Eq.(6) we conclude that

psGB,tBuGA,tAd = exphfSsGBd − SsGA
* dg/kBjpsGA

* ,tA
* uGB

* ,tB
* d.

s9d

If a system is not externally driven, then the conditional
probabilities will be time-translation invariant. In this case
the equalityDt* =−Dt suffices to specify the effect of time
reversal on the time. If the system is externally driven at the
time of time reversal, also all external driving forces have to
reverse direction. At the time of reversal we havetr = tr

* .
The rationale for reversing external fluxes is that, al-

though the derivation is made for a closed system, this closed
system can encompass quite a lot. The distinction between
open and closed depends on where one places the boundary
of the system. Since we are not restricted to being close to
equilibrium, there is no fundamental problem with incorpo-
rating a large part of the external world into the system and
modeling it in a simple way. For example, one or more sub-
systems can behave as heat baths that are well characterized
by one variable only(namely, its temperature). It is even
possible that a subsystem is an experimental setup. When the
time-reversal operation is applied to this subsystem the, so-
called, external driving forces are reversed.

III. COARSE-GRAINING

In Eqs.(6) and(9) the states arising in the conditional part
and those arising in the probability-density part of the con-
ditional probabilities densities have a subtle different mean-
ing. In the conditional part, stateG indicates a microstate
sampled uniformly from the ensemble corresponding to me-
sostateG. Let g be the microscopic state; then, it is distrib-
uted according to

puniformsguG̃d = expf− SsG̃d/kBgd„Gsgd − G̃…. s10d

Here the entropy arises as a normalization factor of the con-
ditional probability Eq.(10):

expfSsG̃d/kBg =E dg d„Gsgd − G̃…. s11d

This is the formal definition of the entropy as a measure for

the volume of the microscopic phase space of a mesostateG̃
as used in Eq.(2).

The state that enters in the probability-density part of the
conditional probability distributions—e.g.,GB in Eq. (4)—
corresponds to a microstate that is originally distributed ac-
cording to Eq.(10). Subsequently, this ensemble is trans-
formed. The distribution of the microstates at the new time
does not obey Eq.(10). The stateGB denotes the projection
of the transformed microstate onto the mesoscopic phase
space[by means ofGsgd]. It is not implied that the mi-
crostates are uniformly distributed.

However, we assume that states are chosen such that, after
a short timeg, most of the microscopic phase space corre-
sponding to the stateG has been sampled while the meso-
scopic state itself has evolved only little. Therefore we can
consider an averaged microstate distribution

pavsg,td =
1

t dVsgdEt

t+t

dt8E
dVsgd

dg8psg8,t8d. s12d

Here dVsgd is a small volume in microscopic phase space
aroundg andt is a small time. During a timet the trajectory
in microscopic phase space has crossed the volumedVsgd
many times. For a large range of valuest and dVsgd the
value ofpavsg ,td reaches a well-defined plateau value. In this
plateau region the characteristic time scale for the evolution
of mesoscopic stateG is much larger thant, but t is much
larger than the typical equilibration time. The characteristic
distances in microscopic phase space corresponding to sig-
nificant changes inG are larger than the width of the region
dVsgd. If one considers smaller volumesdVsgd, one needs to
consider longer timest to obtain good enough statistics.
When certain ergodic properties are obeyed the plateau value
of pavsg ,td is uniformly within the subspace corresponding
to the mesoscopic stateG:

pavsg,td =E dg̃ puniform„guGsg̃d…psg̃,td

=E dG puniformsguGdpsG,td

= expf− S„Gsgd…/kBgp„Gsgd,t…, s13d

with the conditional probability given by Eq.(10).
By means of the averaging procedure, Eq.(13), the fluc-

tuation relations, Eqs.(6) and (9), remain unchanged. The
only difference is that after the averaging, both the initial
mesostateGA and the final stateGB imply a uniform distri-
butions of the microscopic space corresponding to these me-
sostates. After averaging the microscopic distribution is
smeared out. Therefore the dynamics of the averaged prob-
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ability distribution, Eq.(13), does not conserve phase space.
However, the consequence of the conservation of phase
space at the underlying level still is taken into account by
means of the detailed fluctuation relation. This is the most
important conclusion of this work.

The microscopic dynamics leaves the Gibbs entropy de-
fined as

SGstd = − kBE dg psg,tdln psg,td s14d

unchanged. This is a consequence of Liouville’s theorem.
When maximizing the Gibbs entropy with the constraint

psG̃,td =E dg psg,tdd„Gsgd − G̃…, s15d

one will find thatpsg ,tdªpavsg ,td given by Eq.(13). The
entropy for this locally equilibrated distribution is

SG,coursestd =E dGfpsG,tdSsGd − kBpsG,tdln psG,tdg,

s16d

whereSsGd is given by Eq.(11).
The picture that arises for the dynamics of mesoscopic

models is as follows. Starting from a mesoscopic ensemble
described bypsGd and a uniform distribution within the me-
sostate given by Eq.(10), the microscopic evolution leaves
the Gibbs entropy unchanged. Many microstates in the de-
formed mesostates are visited in a timet. Because of the
incompressibility of phase space, this means that the a fine
structure is created. This structure is not smeared out in a
smooth way but becomes finer and finer when time proceeds.
The scales on which the structure changes are too small to be
resolved by the resolution of the measurements of an experi-
menter or the level of description of a model builder. They
do not measurepsg ,td, but pavsg ,td given by Eq.(12). Be-
cause they cannot follow the evolution in time down to the
smallest scales, they continuously lose information about
their system. If they were able to see the details, then the
(Gibbs) entropy change during a time interval would be zero
according to Eq.(14).

If the mesoscopic states are chosen well,pavsg ,td is well
defined for a wide plateau of time and spatial resolutions
[characterized byt anddV used in Eq.(12)]. This causes the
mesoscopic entropySsGd to be an objective quantity and not
merely be a mathematical construct. It is possible that differ-
ent mechanisms with well-separated time scales are impor-
tant to describe the dynamics of a system. If one wants to
describe the system on a certain scale, one can then introduce
an appropriate level of coarse-graining. The entropy one
needs to use at this level can be obtained by maximizing the
Gibbs entropy, Eq.(16), valid for any of the finer scales,
while keeping the large scale variables fixed.

The detailed fluctuation relation as it is derived in this
paper holds for both the microscopic reversible dynamics as
well as the coarse-grained dynamics. It does therefore not
predict the increase in Gibbs entropy[as expressed by Eq.
(14)]. Situations where the mesoscopic Gibbs entropy de-

creases can be easily imagined. A straightforward way of
theoretically creating these situations is by means of the mi-
croscopic time reversal of everyday events(playing movies
backward). Also for these situations the detailed fluctuation
relation is obeyed. The reason that some theories can only
predict an increase in Gibbs entropy is ultimately a coarse
level of description consistent with the detailed fluctuation
theorem.

IV. CONSISTENCY OF STOCHASTIC DIFFERENTIAL
EQUATIONS

The fluctuation theorem as derived in this paper gives
restrictions on mesoscopic models. In this respect it is simi-
lar to the GENERIC formalism[12,13]. This formalism im-
poses constraints on the form of the stochastic differential
equations that can be used to model mesoscopic systems. In
this section I will derive the constraints that can be derived
from the fluctuation theorem, Eq.(9).

The aim is to model mesoscopic dynamics in a thermody-
namic consistent way by means of a stochastic differential
equation

dX = AsXddt + detS ] X

] Xref
D ]

] X
·FDsXddetS ] Xref

] X
DGdt

+ Î2DsXd ·dW. s17d

Here W is the Wiener process. Increments of the Wiener
process are normally distributed stochastic variables. The
mean of an increment is zero. Increments at nonoverlapping
time intervals are statistically independent. The variance of
an increment equals the width of the time interval. This can
be summarized by

kDWil = 0, kDWiDWjl = di jDti , s18d

where the lower index is a time stamp and the increments are
assumed to be taken over time intervalsfti ,ti+1gfDWi

=Wsti+1d−Wstidg. Equation(17) should be interpreted in the
Ito form (see[14,15]). This means that Eq.(17) is the limit
of a finite-difference scheme where the integrands are evalu-
ated at the beginning of the time interval. Since a Wiener
increment is an(isotropic) Gaussian variable, alsoB ·DW is
a Gaussian variable which is fully specified by its variance
BT·BDt. This means that there is some redundancy inB. In
Eq. (17) we therefore introduce the diffusion tensorD
= 1

2BT·B, which is by construction positive symmetric.
The Wiener increments model forces that fluctuate on

small time scales. The coarse-graining step is to model these
fluctuating as white noise and so ignoring all small time
scale correlations that exist.

The form of Eq.(17) might seem somewhat extravagant,
because by redefiningAsXd one can write down a much
more compact and simple equation. However, only in the
form written in Eq.(17) are the quantitiesA and D a true
vector and tensor in the sense that they transform in the usual
way upon coordinate transformation. This is important since
in a coarse-grained description it is often not clear what the
“canonical” coordinates are. It is therefore good to use quan-
tities that have a meaning irrespective of the chosen coordi-
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nate system. In Appendix A it is demonstrated that whenA
and D are required to be tensors the form as given by Eq.
(17) naturally appears.

To derive the constraints that the fluctuation theorem im-
poses on the coefficients of the stochastic differential equa-
tion we look at the limittB→ tA= t of Eq. (9). Note that we
should use this form and not Eq.(6) because stochastic dif-
ferential equations are only well defined for integration for-
ward in time. In this limit the first-order term of the expan-
sion of the conditional probability in the small variableti+1
− ti inserted in Eq.(9) gives

]

] ti+1
psXi+1,ti+1uXi,tidti+1=ti

= − exphfSsXi+1d − SsXi
*dg/kBj

3
]

] ti+1
* psXi

* ,ti
* uXi+1

* ,ti+1
* dti+1=ti

.

s19d

Here the minus sign arises becauseDt=Dt* .
The conditional probability distribution of the stochastic

variableX obeys the Fokker-Planck equation(see Appendix
A)

]

] ti+1
psXi+1,ti+1uXi,tid

= −
]

] Xi+1
·HAsXi+1,tdpsXi+1,ti+1uXi,tid − DsXi+1dpsXi+1,ti+1uXi,tid ·

]

] Xi+1
Fln psXi+1,ti+1uXi,tid + ln detS ] Xi+1

] Xref
DGJ = 0.

s20d

Because the coefficients are time-translation invariant, also
the conditional probabilities are time-translation invariant:

]

] ti+1
* psXi

* ,ti
* uXi+1

* ,ti+1
* d = −

]

] ti
* psXi

* ,ti
* uXi+1

* ,ti+1
* d. s21d

This last time derivative obeys Eq.(20) with all appearances
of Xi+1 replaced byXi

* and Xi replaced byXi+1
* (but Xref

remains unchanged). The equalities for the two time deriva-
tives can be inserted into Eq.(19). This will give constraints
on the allowed forms for the tensorsA andD. The determi-
nation of these constraints is complicated by the fact that the
conditional probability forti+1= ti is a d function. A straight-
forward procedure to determine the constraints is to multiply
both sides of the equality, Eq.(19), by gsXidexpfSsXi

*d /kBg
and integrate over the variableXi

* . By means of integration
by parts and the use of Eq.(7) we find that

]

] X
·HgsXdexpfSsXd/kBgFAsXd − DsXd ·

]

] X
ln detS ] X

] Xref
DG

− DsXd ·
]

] X
sgsXdexpfSsXd/kBgdJ

= − expfSsXd/kBgH ] gsXd
] X* ·FAsX*d

− DsX*d ·
]

] X* ln detS ] X*

] Xref
DG

+
]

] X* SDsX*d ·
] gsXd
] X* DJ . s22d

The requirement that this equality hold for any functiongsXd
results in the relations given below. First, one can decompose
AsXd as

AsXd = ArevsXd + DsXd ·
]

] X
H 1

kB
SsXd + ln detS ] X

] Xref
DJ .

s23d

The ArevsXd term models the reversible part of the motion.
This reversibility is apparent from the behavior when apply-
ing the time-reversal operator. The requirements that follow
from Eq. (22) for this component of the motion are

ArevsX*d = −
] X*

] X
·ArevsXd,

]

] X
· hexpfSsXd/kBgArevsXdj = 0. s24d

According to the second equality the Gibbs entropy is not
increased due to the reversible term. If one follows the time
evolution of an ensemble of nearby mesoscopic states, an
increase in entropySsXd due to this term is compensated for
by a decrease in volume of the ensemble(and thus an in-
crease in the probability density). The net result is that the
total microscopic phase-space volume corresponding to the
mesoscopic space is unchanged.

The second part in Eq.(23) is the irreversible part. This
part scales as

AirrsX*d =
] X*

] X
·AirrsXd, s25d

which is related to the relation

DsX*d =
] X*

] X
·DsXd ·

] X*T

] X
. s26d
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If one inserts Eq.(23) into Eq.(17), one will find that the
part that refers toXref cancels. This gives the most general
expression for a “thermodynamically consistent” stochastic
differential equation

dX = ArevsXddt + expf− SsXd/kBg

3
]

] X
· hDsXdexpfSsXd/kBgjdt + Î2DsXd ·dW

= ArevsXddt +
1

kB
DsXd ·

]

] X
SsXddt +

]

] X
·DsXddt

+ Î2DsXd ·dW. s27d

Any choice forXref gives the same final result. In view of
expression(27) a particular convenient choice of reference is
the one that obeys

detS ] Xref

] X
D = C expfSsXd/kBg. s28d

This means that any unit volume inXref corresponds to a
fixed volume in microscopic phase space. For this choice the
irreversible term in Eq.(23) is zero. This shows that the
irreversible part can be viewed upon as an apparent contri-
bution rather than a physical driving force. It expresses the
fact that an “unnatural” reference state is used.(This is a
little bit similar as trying to describe the dynamics of a sys-
tem using rotating coordinate systems.) For the choice made
in Eq. (28) the contribution disappears and the notion of
volume is directly inherited from the underlying microscopic
space. Using the notation developed in Appendix A, Eq.(29)
can be compactly rewritten as

dX = ArevsXddt + hexpfSsXd/kBg2DsXdj

+ hexpfSsXd/kBgÎ2DsXdj−1 ·dW. s29d

This result can be obtained by inserting Eq.(28) into Eq.
(A8).

The change of the mesoscopic level Gibbs entropy is
given by

d

dt
SG,coarse=E dX psX,tdD:

3S ]

] X
fS− kBln psX,tdg

]

] X
fS− kBln psX,tdgD .

s30d

HerepsX ,td is the probability density to be in statepsX ,td at
time t. As discussed above the increase of entropy is a con-
sequence of coarse-graining. In the case of the stochastic
differential equation processes with very small characteristic
time scales are not resolved. They are modeled as processes
with zero correlation time by means of white noise. The
unresolved correlations integrated over a larger timet give
rise to the diffusion tensor. This diffusion tensor plays a
prominent role in the expression for the entropy production,
Eq. (30).

V. MESOSCOPIC SIMULATIONS

As shown in the previous section stochastic differential
equations that describe nonequilibrium processes can always
be split into a reversible and an irreversible part. A numerical
solution for a single time step of the full problem can be
formed by first considering the purely reversible and the
purely irreversible problems individually(by putting the
other term to zero). An approximation to the full problem can
then be found by combining the partial solutions using a
Trotter expansion(or a higher-order expansion). Usually the
construction of numerical solutions to the subproblems con-
cerns further splitting and Trotter expansion.

The fluctuation theorem such as expressed in Eq.(9) can
be very helpful in creating good numerical approximations to
the subproblems. The reason is that it is expressed for finite
time differences. If one makes sure that the subproblems
obey the fluctuation theorem, then by construction the full
numerical solution also obeys the theorem.

For a purely reversible process one finds that

prevsGi+1,ti+1uGi,tiddGi+1 = prevsGi
* ,ti

* uGi+1
* ,ti+1

* ddGi
* .

s31d

There is a one-on-one relation between the initial and final
states. This means that the conditional probabilities are al-
ways d-function like. The volume of the mesoscopic phase
space need not be conserved. Combining Eq.(31) with the
fluctuation theorem, Eq.(9), one finds that

dGi+1expfSsGi+1dg = dGiexpfSsGidg; s32d

i.e., the underlying microscopic phase-space volume should
not change. This is the discrete equivalent of the second
relation in Eq.(24).

For a purely irreversible process,

pirrsGi+1,ti+1uGi,tid = pirrsGi+1
* ,ti+1uGi

* ,tiddets] Gi+1
* /] Gi+1d.

s33d

Combining Eq.(33) with Eq. (9) gives

pirrsGi+1,ti+1uGi,tid
pirrsGi,ti

* uGi+1,ti+1
* d

= exphfSsGi+1d − SsGidg/kBj. s34d

For the derivation of Eqs.(32) and(34) we made use of Eq.
(8).

In the case of the molecular dynamics simulation(of the
N-V-E ensemble) there is no entropy. The dynamics obeys
Eqs.(31) and (32) for this special case. A widely used inte-
grator is the Verlet algorithm. Its success is usually explained
by the fact that it is both time reversible and it conserves
phase-space volume[16]. These are exactly the properties
that have to be obeyed according to the fluctuation theorem
for purely reversible motion.

In the case of a microscopic system in contact with a heat
bath the total entropy equals the entropy of the bath:

SsGd = S0 − EsGd/T, s35d

whereE is the energy of the system andT the temperature of
the heat bath. Coarse-grained techniques such as dissipative
particle dynamics(DPD) also consider a system in contact
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with a heat bath(but without further internal entropy). The
most distinct feature of DPD is that it conserves momentum;
i.e., it is Galilean invariant. The equation of change for the
momentum of particlei is

dpi = Ff i
C − o

j

gvsr i jd ·vi jGdt + o
j

Î2kBT gvsr i jd ·dWi j ,

s36d

where the indicesi j indicate a pair of particles. The first term
on the right-hand side is the conservative force which con-
stitutes the reversible part of the motion. The last two terms
are the dissipative and fluctuating terms that constitute the
irreversible part. The full equation is in accordance with Eq.
(27). The irreversible part can be split down to individual
pair interactions. The numerical approximation for this part
only considers the change in momentum of the two particles
in a pair i and j . All the momenta of the other particles
remain unchanged, and the positions of all particles includ-
ing those ofi and j do not change. Therefore only the kinetic
contribution to the energy in Eq.(35) changes. The require-
ment (34) now reduces to

psp̃i,p̃jupi,pjd
pspi,pjup̃i,p̃jd

= exph− fsp̃i
2 − pi

2d/2mi + sp̃j
2 − pj

2d/2mjg/kBTj,

s37d

where the tildes indicate the new values. If one requires that
the individual interactions conserve momentum—i.e.,p̃i + p̃j
=pi +pj—one finds that Eq.(37) is obeyed for

psp̃i,p̃jupi,pjd ~ exph− fÎ1 + asp̃j − p̃id

− Îaspj − pidg2/4mkBTj, s38d

with m the reduced mass of the two-particle system. In[17],
I developed a DPD discretization that is consistent with Eq.
(38) using a different reasoning. This scheme was shown to
be superior to other discretization schemes, especially for
determining equilibrium properties.

The reversible part of Eq.(36) can be derived from a
Hamiltonian. This means that it does preserve the volume of
phase space and energy. Since the entropy of the heat bath is
a function of energy via Eq.(35), this is consistent with Eq.
(24). The use of the Verlet algorithm seems to be a good
choice to solve the reversible part. However, in the dis-
cretized case round-off errors are present. This means that
energy is not exactly conserved. Therefore the entropy does
change. Since the Verlet algorithm does rigorously obey con-
servation of phase-space volume, Eq.(32) is not rigorously
obeyed for the numerical solution. It turns out that this de-
viation is the dominant discretization error at finite time step;
see[17].

In the case of Monte Carlo simulations(of the N-V-T
ensemble) one is not interested in the dynamics but only in
the equilibrium statistics. In this case one has a lot of free-
dom to construct conditional probabilities. The only condi-
tion that has to be obeyed is Eq.(34) with Eq. (35) inserted.
This gives the ordinary detailed balance condition. A
straightforward way to achieve this is by means of the Me-
tropolis procedure.

For models that are not only in contact with a heat bath
but also have internal entropy the detailed balance condition
can be easily generalized by using Eq.(34). The first step is
the generation of a trial move according to some probability
density. The next step is the acceptation step where a move is
accepted or rejected with a certain probability. The total con-
ditional probability is

psGi+1uGid = PaccsGi+1uGidptrialsGi+1uGid. s39d

When one chooses

PaccsGi+1uGid = minS1,
ptrialsGiuGi+1de−SsGid/kB

ptrialsGi+1uGide−SsGi+1d/kB
D , s40d

Eq. (34) is obeyed.
This scheme can also be used to generate thermodynami-

cally consistent discretizations for the irreversible part of the
dynamical equation(27). To generate such a scheme one has
to ensure that one generates a stochastic trial step with the
correct variance(for the limit Dt→0). For small enough time
steps the stochastic term in the differential equation is always
dominant. Also for small enough time stepsPacc will be very
close to one. This means that Eq.(40) gives a perturbation on
the stochastic step. As we have shown in Sec. IV the fluc-
tuation theorem applied to the irreversible part results in the
(irreversible) deterministic term in Eq.(27). Therefore appli-
cation of Eq.(40), which obeys the fluctuation theorem ap-
plied to purely irreversible motion, will result in a perturba-
tion on the stochastic part that in the limitDt→0 is equal to
the deterministic term in Eq.(27).

Therefore, generating a trial move with the correct vari-
ance and applying the generalized Metropolis scheme gives a
valid discretization of the irreversible part of a thermody-
namically consistent stochastic differential equation. More-
over, the discretization itself is also thermodynamically con-
sistent.

One can think of a wide variety of ways of generating
trial moves. Acceptance rates can be increased by introduc-
ing biasing. Everything is allowed as long as the variance of
stochastic part is correct up toOsDtd. If one uses more ad-
vanced discretization(e.g., with a predictor step or partly
implicit), then also the computation of the trial probability
densities will become more computationally expensive.

A. Time discretization

The matter of time step dependence raises some important
issues that have to be considered. When investigating a
simple Euler forward discretization of the irreversible parts
of Eq. (27) one will find that for small time steps the sto-
chastic term is much larger than the deterministic term. Since
DW is proportional toÎDt, the entropy gradient terms and
the stochastic term become comparable for

Dt < kB
2suDuu] S/] Xu2d−1. s41d

This corresponds to a displacement

DX < kB
ÎuDuDt < u] S/] Xu−1. s42d

For such a displacement the change in entropy during one
time step is of the order ofkB.
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When increasing the time step still further the stochastic
term becomes small compared to the deterministic term. If
on the corresponding length scales the variation in the en-
tropy gradient(and in the diffusion) is small, a Euler discreti-
zation of Eq.(27) using this large time step is still an accu-
rate approximation. This is the case when

U ] S

] X
U2

@ kBU ]2S

] X ] X
U . s43d

This can be considered a far-from-equilibrium condition. If it
is obeyed, fluctuations are negligible compared to the irre-
versible deterministic terms for large enough time steps. If it
is not obeyed, the system is in the mesoscopic regime. Here
significant changes occur on time scales smaller than that
given by Eq.(41) or, equivalently, for entropy changes of the
order of kB. Fluctuations always play a dominant role and
cannot be neglected even if one considers longer time scales.

Equation(29) is an alternative formulation of Eq.(27). A
straightforward discretization(of the irreversible part) is

DXpred= Î2DsXd · DW

DX = exphSsfX + Xpredg/2d/kBj2DsfX + Xpredg/2d

3hexpfSsXd/kBgÎ2DsXdj−1 · DW. s44d

(The discretized equation does not obey the detailed fluctua-
tion theorem.) An advantage of this discretization is that no
derivatives need to be determined. It is, however, only a
good approximation for time steps smaller than that given by
Eq. (41). The deterministic term arises as a perturbation of
the stochastic term. If, however, the time step is too large, the
deterministic term can no longer be treated as a perturbation.

Similar conclusions can be drawn for the thermodynami-
cally consistent schemes given above. The correct equilib-
rium statistics will be sampled for any chosen time step. This
does not mean that the schemes yield a satisfactory discreti-
zation for any finiteDt. The reason is that dynamical prop-
erties will be time step dependent.

For example, in the DPD scheme the typical velocity re-
laxation time(for a dense enough fluid) is m/g. Since the
deviation of the particle velocity from the center-of-mass ve-
locity of a blob is of the order of the thermal velocity—i.e.,
vth=ÎkBT/m—the self-diffusion coefficient in space is pro-
portional to vth

2 m/g=kT/g. When time steps are chosen
larger than the characteristic time, the particle velocity re-
laxes almost completely within one time stepDt. Therefore
the self-diffusion found in the simulation will be proportional
to vth

2 Dt. This is larger than the true self-diffusion.
In the case of the generalized Metropolis scheme a rejec-

tion means that a dynamical variable is not updated during
the current time step. Many rejections cause the dynamics in
the simulated system to slow down. This happens when en-
tropy changes during a time step are comparable or larger
thankB—i.e., for time steps larger than the one in Eq.(41).

VI. DISCUSSION

In this paper I derived a detailed fluctuation theorem. The
main ingredients for the derivation are microscopic time re-

versibility and Liouville’s theorem. If one assumes local
equilibrium—i.e., fast degrees of freedom are in equilibrium
and slow variables can be far from equilibrium—the detailed
fluctuation theorem remains valid. This means that we have a
relation that is valid far a large class of far-from-equilibrium
models. This is especially valuable for the application to me-
soscopic situations.

Most of the literature on the fluctuation theorem has a
dynamical-systems point of perspective. The program seems
to be to characterize nonequilibrium stationary states—e.g.,
by means of the Sinai-Rowen-Bowen(SRB) measure—and
use its properties to derive relations such as the stationary-
state fluctuation theorem[5]. Systems that are considered are
typically deterministic dissipative systems.

The entropy production is defined as minus the phase-
space contraction rate. The change of phase-space volume is
inversely proportional to the probability density of a state
tracked in time. When introducing the entropy change as an
integral over time of the entropy production rate, the detailed
fluctuation theorem, Eq.(6), is obeyed.

In Appendix B, I show how to derive the steady-state
fluctuation theorem from the detailed fluctuation theorem by
making some ergodic assumptions. A feature of this deriva-
tion is that detailed knowledge of the stationary state(such
as an assumed SRB measure) is not needed. On the other
hand, if a stationary state can be shown to have a SRB mea-
sure, this should be consistent with the stationary-state fluc-
tuation theorem. The existence of a SRB measure is, how-
ever, not a prerequisite for the theorem to be valid. In the
case of, for example, a system described by a stochastic dif-
ferential equation the stationary distribution is not expected
to be a SRB measure but the fluctuation theorem is valid.

The derivation given in this paper is essentially the same
as the one given by Maes and Netočný [8], but less formal.
The same expression was also derived before by Jarzynski
[9] although he considered a special case—namely, a micro-
scopic system in contact with one or more heat baths. The
main contribution of the present paper is that it demonstrates
the link with mesoscopic theories such as the GENERIC
formalism [12,13].

In Sec. IV, I showed the constraints the detailed fluctua-
tion theorem imposes on the form of stochastic differential
equations. As a starting point I used the general stochastic
differential equation written in the generalized kinetic form
developed in Appendix A. It is interesting to note that this
form is dictated by the fact that the primary variables in the
stochastic differential equation are taken to be tensorial(i.e.,
they behave well upon coordinate transformation). The fact
that this form is found to be most suitable for physical theo-
ries is a consequence of this observation.

The irreversible part of the motion of Eq.(27) is exactly
of the form given by the GENERIC formalism. Up to now
the form was motivated by reference to the fluctuation-
dissipation theorem(of the second kind) [18]. In the present
paper it was proved that, as long as the local equilibrium
assumption holds, the irreversible part is of the form de-
scribed by Eq.(27).

Öttinger and Grmela assume that the reversible phase-
space velocityArev is perpendicular to the entropy gradient.
This is consistent with Eq.(24) for the case that] /]X ·Arev
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=0. However, due to the transformation behavior of the en-
tropy, Eq.(3), Eq. (24) is valid in any coordinate frame, but
the orthogonality ofArev and the entropy flux is not. In[18]
de Pablo and Öttinger realize this and redefine the entropy as

SdPOsXd = SsXd − kBln detS ] Xref

] X
D . s45d

This redefined entropy transforms as a scalar. Therefore the
orthogonality condition can be maintained when changing
coordinates. To be consistent with Eq.(24), Arev should be
incompressible forXref. The redefinition, Eq.(45), however,
has a few consequences that are not taken into account con-
sistently in[18]. In expressions such as Eq.(10), SsXd is the
proper entropy to be used in the normalization factor for the
microcanonical ensemble, notSdPOsXd. Next, in Eq. (23),
SdPOsXd can be directly substituted. This has as a conse-
quence that in the final expression of the stochastic differen-
tial equation a term referring to the reference state, as in Eq.
(A6), appears. This means that, when usingSdPOsXd, the gen-
eral form of the stochastic differential equation has an extra
term compared to the proposed GENERIC form. Last, also
the expression for the Gibbs entropy, Eq.(16), acquires an
extra term.

One has to conclude that in the GENERIC formalism a
preferred coordinate system is used. It is implicitly assumed
that there is no(mesoscopic) phase-space contraction due to
reversible motion. This excludes the treatment of problems
that are deterministic, reversible, and dissipative, such as the
Slodd system that was so important in the development of
the fluctuation theorem(see Appendix B). I therefore pro-
pose to use the entropy definition as proposed in this paper
and take for granted that it does not transform as a usual
scalar quantity.

The GENERIC formalism poses a more restrictive form
on the reversible motion than is found in the present paper—
namely, a Poisson structure. The fact that I do not find this is
because I did not consider the detailed structure of the mi-
croscopic dynamics. The only part that was used was Liou-
ville’s theorem. It is in fact not proved from first principles
that the reversible part has to have a Poisson structure[18]. I
suspect that it cannot be proved. I think that the Poisson
structure only holds for special choices of the mesoscopic
variables. Once a good choice for the mesoscopic variables is
made, any coordinate transformation of the mesoscopic
space will leave the structure invariant. Probably this choice
of variables is usually the natural choice to make. The obser-
vation that most(maybe all) known macroscopic equations
are consistent with this structure[12,13] is explained by this.
A fundamental proof is needed.

Since the form we propose in this paper is less restrictive
than the GENERIC form, it has less predictive power. When
using the GENERIC form, however, one should keep in
mind that the extra structure has not been proved from first
principles.

Besides the fact that the detailed fluctuation theorem im-
poses constraints on the form mesoscopic and macroscopic
equations can have, it can also be used to create numerical
approximations. In Sec. V, I gave some examples of this. The

use of the detailed fluctuation theorem ensures that the
schemes are thermodynamically consistent. It was noted in
Sec. V A that this is not necessarily equivalent to higher
accuracy. In situations far from equilibrium, systematic irre-
versible driving forces due to entropy gradients are dominant
compared to thermal fluctuations. In this case imposing ther-
modynamically consistency usually inversely affects the
simulation accuracy of the dynamical behavior.
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APPENDIX A: A GENERALIZATION OF THE KINETIC
STOCHASTIC INTEGRAL

In this appendix we will investigate what the general form
of a stochastic differential equation is when one requires that
the primary variables in the equation be tensor quantities.
Consider the simple stochastic differential equation

dX = AsXddt + CsXddt + Î2DsXd ·dW sA1d

and interpret this equation in the Ito form[14,15]. Here the
vector notation and dot product are just used as a shorthand
for an index notation. Let us require thatAsXd andDsXd are
tensor quantities. This means that upon coordinate transfor-
mationX→X8,

A8sX8d =
] X8

] X
·AsXd,

D8sX8d =
] X8

] X
·DsXd ·S ] X8

] X
DT

. sA2d

Using Ito calculus[14,15] one finds that Eq.(A1) transforms
to

dX8 =
] X8

] X
· †AsXd + CsXd‡dt +

]2X8

] X ] X
:DsXddt

+Î2
] X8

] X
·DsXd ·S ] X8

] X
DT

·dW. sA3d

This gives forCsXd the transformation rule

C8sX8d =
] X8

] X
·CsXd +

]2X8

] X ] X
:DsXd. sA4d

A choice forCsXd that obeys this transformation rule is

CsXd = detS ] Xref

] X
D ]

] X
·FDsXddetS ] X

] Xref
DG . sA5d

For any otherC̃sXd that obeys Eq.(A4) the difference

C̃sXd−CsXd scales as a vector and can therefore be included
in AsXd. The full expression for Eq.(A1) becomes
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dX = AsXddt + detS ] X

] Xref
D ]

] X
·FDsXddetS ] Xref

] X
DGdt

+ Î2DsXd ·dW. sA6d

The importance of this equation is that both quantitiesAsXd
andDsXd are tensors. This is different from the ordinary Ito
form, Eq. (A1), with CsXd=0. In physical theories one usu-
ally uses tensorial quantities, since this guarantees indepen-
dence of the coordinate system. Therefore equations of the
form of Eq. (A6) appear naturally in applications.

The occurrence of the reference coordinateXref might be a
surprise to some. If one uses the expression, Eq.(A5), for
CsXd a change in reference,Xref gives a contribution to
AsXd. To understand the role of the reference it is useful to
investigate the Fokker-Planck equation corresponding to Eq.
(A6):

]

] t
psX,td +

]

] X
·HAsX,tdpsX,td − DsX,tdpsX,td

3
]

] X
Fln psX,td + ln detS ] X

] Xref
DGJ = 0. sA7d

From this form one can see that forAsXd=0 the equilibrium
probability obeyspsXddets]X /]Xrefd=const. Using the trans-
formation rules for probability densities this corresponds to
psXrefd=const. This means that, in a nondriven system, all
unit volumes defined by means of the coordinatesXref are
equally likely to be visited.

Equation(A6) can also be written as

dX = AsXddt + FdetS ] Xref

] X
D2DsXdG

+ FdetS ] Xref

] X
DÎ2DsXdG−1

·dW. sA8d

It is a generalization of the kinetic integral[19]. The + sym-
bol indicates the Stratonovich dot product. It here denotes
that, in a finite-difference approximation, the part to the left
of the dot should be evaluated centrally. The part to the right
of the dot should be evaluated at the initial point of a time
interval. Thus an equation

dX= fsXd + gsXddW sA9d

is the limit to Dt→0 of

Xsti+1d = Xstid +
1

2
ff„Xstid… + f„Xsti+1d…g

3g„Xstid…fWsti+1d − Wstidg. sA10d

Expanding this expression forfsd aroundXi and using the
fact that DW2→Dt one can write down the equivalent Ito
form. Doing this exercise for Eq.(A8) shows it is equivalent
to Eq. (A6).

From a numerical point of view interpretation(A8) can be
convenient since no evaluation of gradients is needed. Fur-
thermore, different evaluations of the midpoint term give the
same result in theDt→0 limit. A particular practical evalu-
ation is to use a predictor-corrector algorithm.

APPENDIX B: DERIVATION OF THE STATIONARY
FLUCTUATION THEOREM

The stationary fluctuation theorem is a consequence of the
detailed fluctuation theorem applied to stationary states of
driven systems. It is valid for long times only. Some ergod-
icity properties have to be obeyed for it to apply.

The standard example used is a system of interacting par-
ticles driven by a shear flow. The equations of motion used
are the Sllod equations(so named because of its close rela-
tionship to the Dolls tensor algorithm)

ẋi = pi + ġyiex, ṗi = F i − ġpy,iex − api . sB1d

This is Newton’s equation for the particles with interparticle
forces, but expressed using so-called peculiar momenta. The
peculiar momentum is defined by means of the relative ve-
locity with respect to the applied shear, with shear rateġ.
The driven system is thermostated by means of a Gaussian
thermostat. This can be done by determininga (as a function
of all coordinates) such that either the internal energy or the
kinetic energy remains constant. In both cases the kinetic
energy is defined using the peculiar momenta(i.e., locally
with respect to the applied flow).

The system of equations is reversible, but phase-space
volume is not conserved. Here by reversible we mean that
the trajectories are traced back when both momenta and the
driving force ġ are reversed.

The phase-space contraction is

s/kB = −
]

] G
· Ġ = − o

i

]

] xi
· ẋi +

]

] pi
· ṗi . sB2d

The assumption that the system is an approximate descrip-
tion of some underlying microscopic system induces an en-
tropy definition. Since the equations of motion are reversible,
the total underlying microscopic phase-space volume should
not change during the time evolution of the system. This
means that the entropy should be such thatdV expsS/kBd is
constant in time. HeredV is the volume of a(deforming)
neighborhood around a point in phase space. This implies the
definition

dS

dt
= s. sB3d

Since the entropy cannot be expressed in terms of the phase-
space coordinates, it should be introduced as extra state vari-
able. With Eq.(B3) to supplement the equations of motion
the full equations obey the conditions for reversible motion
as stated in Sec. IV.

When applying a constant shear the evolution of the sys-
tem, Eq.(B2), will ultimately reach a stationary state. Note
that the notion of stationarity always assumes some level of
coarse-graining. In the case of microscopic incompressible
motion the phase-space density keeps evolving and never
approaches an attractor. Coarse-graining by means of time
and spatial averaging combined with ergodic properties are
necessary to define stationary(and equilibrium) states. In the
case of deterministic systems like the Sllod equations the
equations are already coarse grained to some degree. Since
on average the phase-space contraction will be larger than
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zero, the phase-space density will converge toward a strange
attractor.

One can conclude that, for deterministic equations such as
the Sllod equations, an entropy can always be determined by
means of Eq.(B3). This entropy is such that the associated
microscopic phase-space volume is a constant of the motion
or, equivalently, that the generalized Gibbs entropy, Eq.(16),
is conserved. An entropy that is consistent with the conser-
vation of microscopic phase space for reversible motion
causes the detailed fluctuation theorem as introduced in this
paper to be valid.

The detailed fluctuation theorem leads to the stationary
fluctuation theorem. When applying the detailed fluctuation
theorem, Eq.(9), to the extended set of variables this gives

pġsGB,SB,tBuGA,SA,tAd = expfsSB − SA
* d/kBg

3 pġ*sGA
* ,SA

* ,tA
* uGB

* ,SB
* ,tB

* d.

sB4d

Note that we labeled the probability densities by means of
the driving force. In the time-reversed case also the driving
force is time reversed. In the case of deterministic equations
such as the Sllod equations the conditional properties are all
d-function like.

We will assume that the states in Eq.(B4) are coarse
grained to such an extent that stationarity is defined in a
nonpathological way. Note that this is not strictly the case for
deterministic systems like the Slodd equations. This will be
discussed below.

In the stationary state only relative differences in time and
entropy are important, so

pġsGB,SB,tBuGA,SA,tAd =
1

Dt
pġsGB,s̄,DtuGAd, sB5d

wheres̄ is the mean entropy productionsSB−SAd /Dt. We can
rewrite this conditional probability as

pġsGB,s̄,DtuGAd = pġss̄,DtuGB,GAdpġsGB,DtuGAd. sB6d

This means that the conditional probability density to end up
in stateB and have a mean entropy productions̄ equals the
probability density to have an entropy productions̄ for paths
that are known to end up in stateB times the probability
density that the path indeeds ends up in stateB. When sub-
stituting the relations outlined above into Eq.(B4) and taking
the logarithm on both sides one finds that

ln
pġss̄,DtuGB,GAd

pġ*ss̄* ,DtuGA
* ,GB

* d
+ ln

pġsGB,DtuGAd

pġ*sGA
* ,DtuGB

* d

= s̄Dt/kB + sSA − SA
* d/kB. sB7d

The reason to make this splitting is then, whenDt is larger
than a few correlation times, the conditional probabilities

will become independent of the initial and final states:

lim
Dt→`

pġss̄,DtuGB,GAd = pġss̄,Dtd,

lim
Dt→`

pġsGB,DtuGAd = pġsGBd. sB8d

If we chooseGA andGB to be part if the attractor(and there-
fore GA

* andGB
* part of the attractor of the reversed process),

thenpġsGBd andpġ*sGA
* d are nonzero.

In the limit manyDt→` terms in Eq.(B7) become con-
stant. Dividing both sides byDt and using the limiting be-
havior as given by Eq.(B8) gives the stationary fluctuation
theorem

lim
Dt→`

1

Dt
ln

pġss̄,Dtd

pġ*s− s̄,Dtd
=

s̄

kB
. sB9d

Here we used thats̄p =−s̄+sSA−SA
* d /Dt. Note that in the

denominator still the reversed shear rateġ* is used. However,
for the stationary situation one expects that the probability to
find a certain entropy production does not depend on the
direction of the stationary shear rate. Thereforeġ* can be
replaced byġ. With this substitution Eq.(B9) becomes the
famous fluctuation theorem. It states that for large times
positive entropy production is exponentially more likely than
negative entropy production.

For a deterministic system, such as the Slodd system, the
analysis as outlined above has some weak points. All condi-
tional probabilities ared-function like. The attractor(if it
exists) will be a fractal. Equation(B8) is not valid since there
is always a one-on-one correspondence between initial and
final states. This problem in the analysis can be resolved by
looking at such a deterministic system on a somewhat
coarser level. From this point of view a state denoted byG
includes a small neighborhood. If one then assumes a strong
dependency on initial conditions—i.e., a chaotic hypothesis
[4]—points that start out near each other will end up in very
different points in phase space. Therefore Eq.(B8) will be
valid. In numerical experiments the coarse-graining usually
occurs becausepġss̄ ,Dtd is determined using a finite resolu-
tion (by means of binning).

Recently it has been shown that the stationary fluctuation
theorem is not valid for many systems[20–23]. A simple
example is a Brownian particle dragged through a fluid by
means of optical tweezers. As demonstrated in[23], in the
case of the Brownian particle, the stationary fluctuation theo-
rem holds for the work but not for the entropy. The point
where the current derivation breaks down for this example is
Eq. (B8). In the case of the Brownian particle, the work done
on the system over a long time becomes statistically inde-
pendent of the initial and final positions. The entropy differ-
ence, however, is the work minus the potential energy differ-
ence of the optical trap. Since this energy difference is
dependent on the initial and final positions, the first limit in
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Eq. (B8) is not valid. If one uses the work instead of the
entropy as extra variable, besides the position of the Brown-
ian particle, in the conditional probability, the limits of Eq.
(B8) are allowed.

For a reversible system, like the Slodd system, the Gibbs
entropy remains constant. In Eq.(16) the first term will in-
crease with time. However, the probability density obtains
more and more fine structure as time proceeds. Therefore the
p ln p term will give a negative contribution to the Gibbs
entropy. This means that the two contributions cancel out. If
one looks on a coarser level, this process stops when the
small scales can no longer be resolved. On this coarse-

grained levels̄ indeed gives the Gibbs entropy production
for long times.

Note that the stationary fluctuation theorem seems to im-
ply the second law of thermo-dynamics for large times(but
also deviations for smaller times). We earlier found that the
transient fluctuation theorem itself does not imply a direction
of the entropy production. The fact that the stationary state
fluctuation theorem derived here predicts a entropy produc-
tion that is positive on average depends on the assumptions
made. The main assumption is that a stationary state exists.
Such state can only be defined if one looks to a system on a
somewhat coarse-grained level.
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