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The detailed fluctuation theorem is derived. The basic assumptions are phase space incompressibility
(Liouville’s theorem) and time reversibility on the microscopic level. The theorem relates the conditional
probability to end up in a mesoscopic stditg at timetg, starting fromI', at timet,, to the time-reversed
process. The ratio of these two probability densities is related to the entropy difference of the two mesoscopic
states. The fluctuation theorem remains valid even far from equilibrium as long as the local equilibrium
condition is obeyed. It is shown that the theorem imposes constraints on the form mesoscopic equations can
take. For stochastic differential equations a generalized kinetic form is derived. The fluctuation theorem can be
used to derive thermodynamically consistent simulation techniques. At the end of this paper the relation with
the GENERIC formalism is discussed.
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I. INTRODUCTION and Netény [8]. The detailed fluctuation theorem derived

The (steady-statefluctuation theorem is a relation for the ?Oereenglvl?s ;r:ésrgfgofsigthé Sig?g{flor;?l t?r:)eb? b\lll\:tg/eﬂe&seltles
probability density of measuring a certain average entropy P P B B

production in a nonequilibrium steady-state experiment. IoYSteM Starts out in stalé, at timet,. The probability den-

states that sity is related to that of the time-reversed process. This kind
of relation can be called a detailed fluctuation theorem since
p(o) - it generalizes the detailed balance condition.
o) = exp(oAt/kg) (1) The derivation is straightforward. The main ingredients

are Liouville's theorem—i.e., conservation of microscopic
for At large enough. Herp(o) is the probability density of Phase space volume during time evolution—and micro-
measuring an average entropy productioover a timeAt.  reversibility. A mesoscopic state is defined as an ensemble of
The fluctuation theorem is valid in the limiit— 0. This  mMicroscopic states. The ratio of the conditional probabilities
theorem is special because it is believed to be valid not onljor the forward and time-reversed process is related to the
for the near-equilibrium situations, but also in the far fromentropy difference of the initial and final states. The defini-
equilibrium stationary situations. It illustrates that the secondion we use for the mesoscopic entropy of a mesoscopic state
law of thermodynamics is sometimes violated, because thes essentially a Boltzmann entropy. The same definition is
probability of negative entropy production is finite when used in, for example, the projection operator theory of
there is positive entropy production. On the other hand, iZwanzig[11] and the GENERIC formalism of Grmela and
illustrates that the probability for measuring positive entropyOttinger[12,13 (GENERIC is the acronym for the general
production is exponentially more likely than negative en-equation for the nonequilibrium reversible-irreversible
tropy production. coupling.
_ Equation(1) was first found by Evans, Cohen, and Mor- ¢ wjll be argued that in coarse-grained theories the de-
riss[1] on the grounds of theoretical considerations and congyjled fluctuation theorem remains valid, although Liouville’s
firmed to be obeyed by a simulation of thermostated particleg,eorem tself is no longer valid. Next, | will show that this

in a shear flow. It was put on a more rigorous footing bytheorem im : : ;
. poses constraints on the equations that describe
Evans and Searle®] and Gallavotti and Cohe[8,4]. The the mesoscopic dynamics. Specifically | will show that,

theoretical considerations in these papers, suc_h as the Sin.@\'/hen using stochastic differential equations for the model-
Rowen-Bowen measures, are taken from the field of chaouﬁ1g the constraints give equations of the form of the GE-

dynamics(see[5]). A review on the fluctuation theorem, in- NERIC formalism. Since the detailed fluctuation theorem re-

?IUd'gg néjmerlcal and experimental verification, can beIates mesoscopic states separated in time, it can be a valuable
OUS '.g[ ].th teadv-state fluctuation th lso t . tqtol for developing simulation algorithms.
esldes the steady-state fiuctuation theorem aiso ransient o e of the goals of the present paper is to create a bridge

fluctuation theorems have been derijéer1Q. In this paper poyean two approaches to nonequilibrium thermodynamics:
| also give a derivation of a transient fluctuation theorem. My,

. . the fluctuation-theorem approach and the GENERIC ap-
approach is closest related to those of Jarzy[@land Maes proach. Two communities seem to have developed similar

results without much interaction. The connection of the de-
tailed fluctuation theorem to the GENERIC formalism will
*Electronic address: e.a.j.f.peters@tue.nl be discussed more extensively in the final discussion section.
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Il. DERIVATION OF THE FLUCTUATION THEOREM

Consider a mesoscopic system described by a slates
The phase space is of too low a dimension to fully specify
the microscopic state of the system. The mesoscopic Etate
labels a subspace in the microscopic phase space. As an ex-
ample let us choose one componé&hto represent the total
momentum of a blob of particles. The corresponding micro-
scopic subspace is the union of all points in microscopic
phase space for which the total momenta of the blob have the
specified total momenturh;. The full mesoscopic statf
=(T'y,...,I')) corresponds to the intersection of the micro-
scopic subspaces corresponding to the specific values for
I'y,...,T'y If one considers a neighborhood around slaia
mesoscopic space, this corresponds to a region in micro-
scopic space. The volume in microscopic space of this region
is

8V =8I exdS(I')/kg], (2
FIG. 1. The upper picture shows the microscopic time evolution

where 8I' denotes the volume of the the mesoscopic spaceéf the region of microstates corresponding to a neighborhood
that is occupied. This equation defines the entr&3)) of  around a mesoscopic stdfg. The solid black regions are the over-
the mesoscopic statE. The constankg is the Boltzmann 'ap of the evolved state witha neighborhood aroundhe meso-
constant. Note that the entropy as defined in this way isSCOPic statd’s. The gray subdomains of the original stdlg are
partly, a coordinate-dependent definition. If one changes thiie corresponding states tracked backward to tigeThe lower

parametrization of the mesoscopic space frbrio I, the picture shows the microscopic evolutionlog tracked backward in
entropy will transform as ' time tot,. The black regions are the overlap between this state and

stateI'y. From microreversibility we conclude that the gray and
black regions in the upper and lower figures at a fixed time are the
r’ same parts of microscopic space. From Liouville’s theorem we con-
) . (3 clude that the volumes of the gray and black regions on the left- and
right-hand sides are equal. Combining these two observations gives
The notion of a mesoscopic state is useful when the evothat the volumes of the black regions in the lower left figure and the
lution of the mesoscopic quantity is a slow variable com-upper-right figure are equal. This elementary observation results
pared to the time evolution within the microscopic regioninto the fluctuation theorem.
defined by it. In this case, during a short enough time inter-
val, much of the microscopic space correspondind tbas Noyerla
been explored while the value bfitself has changed only a P(Lg, tg[T'a,ta) 8T'g = T exr{S(Fz)/k T (4)
little. Assuming ergodicity in the microscopic subspace, the A B
mesoscopic state is well described by assuming that all miHere the equality is approached whéli, and 81"z approach
croscopic states il are equally likely to occur. zero. Alternatively we can consider stdfg at timetg and
Now let us consider two timetg andtg and two state$’s, ~ determine to which subspace of microscopic space it corre-
andI's. Let us assume that at tintg the system is prepared sponds at time&,. The overlap between this subspace and the
in an ensemble of microstates corresponding to a neighboone corresponding tb', is characterized by the conditional
hood of volumedl', around the mesoscopic stakg. All probability densityp(',ta| g, tp):
points in the microscopic subspace will be assumed to have ~
the same statistical weight. The total volume of microscopic _ Noverlap
: (I p,taT'e,t5) O1's = : ©)
phase space ifI'sexd S(I'y)/kg]. Let p(I'g, tg| T4, t4) be the ST gexd S(I'g)/kg]
conditional probability density that a microstate, which, at ~
time t,, is an element of the ensemble corresponding td1€re &Voyerapis the volume of the overlap region. The over-
mesostatd’,, after evolution to timeg ends up in stat&g.  lap region of(the region aroundl’, evolved totg with (the
The conditional probabilityp(I'g,tg| s, ta)oTg is the frac-  region arounyi ' and that ofI'y evolved tot, with T’y
tion of the original microspace volume—ie.s',  correspond to each other. This is illustrated in Fig. 1. Due to
X exg S(I')/kg]—that ends up in the region in microscopic Llouyllle’s theorem—_|.e., the fact that the_ volume_of micro-
space defined by a neighborhood around the mesdCOPIC phase space is conserved—the microscopic _volume of
scopic phasd’g with volume 8T'g. If we define Voyeriap @S the ovgrlap region does not change with time. This means
the overlap between the microscopic volume of the volumdhat in both —expressions forp(I's,t[T'a,ta) and
corresponding to the region with volumél', aroundI’,  P(I'a,ta|I's,tg) the overlap volumes are equal. From the
(evolved to timetg) and the region arountg, then equality 6Voyeriap= MVoveriap ONE finds that

U 1 — (9_
SI)=9T) +kgln det< T
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P(Ig,te|Tata) = exp[S(Tg) = S(T'a) 1/kg} (T p,tal T, ts) - Punitorm( YD) = exd = S(T)/kg]8(T(y) -T).  (10)
(6) Here the entropy arises as a normalization factor of the con-
This is the detailed fluctuation theorem. ditional probability Eq.(10):
For many purposes it is more convenient to put the initial
time before the final time. This can be achieved by exploiting exr{S(f)/kB] = f dy 8(T'(y) - f), (12)
the time reversibility of the microscopic system. When ap-

plying the time reversal operator the arrow of time and allyig is the formal definition of the entropy as a measure for

microscopic rates, such as momenta, change sign. The oper%— | f the mi ic oh ¢ Etat
tion is an operation working on the microscopic space. O aseuvsc:egr?r? ng(z)e MICrOSCOpIC phase space of a mesoslate

the mesoscopic space it is only well defined when the micro . . .
pic Sp y The state that enters in the probability-density part of the

scopic subspace corresponding to a sfates transformed gon ditional probability distributions—e.gl'g in Eq. (4)—

into a subspace that corresponds to a single mesoscopic st . ) Y .
We will assume that the mesoscopic states are chosen Sugﬂrrgsponds to a microstate that is o_rlglnally d|str|k_)uted ac-
ording to EqQ.(10). Subsequently, this ensemble is trans-

that this is the case. In this paper the time-reversed sta d The distributi £ th : tat tth "
corresponding td” will be written asI'*. Since the micro- ormed. the distribution ot the microstates at the new ime
goes not obey Eq10). The state'z denotes the projection

scopic time-reversal operation leaves the volume of phas f the t f d mi tat o th e oh
space invariant, the one-on-one relation also imp|gsi- of the transformed microstate onto the Mesoscopic phase

larly to Eq.(3)] that space[by means ofl'(y)]. It is not implied that the mi-
crostates are uniformly distributed.
exd S(T')/kg] = exd S(I')/kgldet(aT"/aT). (7 However, we assume that states are chosen such that, after

a short timey, most of the microscopic phase space corre-
sponding to the stat€' has been sampled while the meso-
scopic state itself has evolved only little. Therefore we can
I ty)de(d,/dT,). (8)  consider an averaged microstate distribution

For the conditional transformation of conditional probabili-
ties microreversibility implies that

P(Fatal T, te) = p(I'y ta
Using Eq.(6) we conclude that Pa7.t) =
P(Lg,ta|Ta ta) = expg[S(I'g) — S(I'p) Jkg}p(Lp, ta

1 t+7
m dt'f dy'p(y,t"). (12
F; vt; ). t M(y)
(9) Here 6V(y) is a small volume in microscopic phase space
aroundy and 7 is a small time. During a time the trajectory
If a system is not externa”y driven, then the Conditionalin microscopic phase space has crossed the VOIMQ’)
probabiliti_es vxiill be time.-translation i.nvariant. In this case many times. For a large range of valuesand 8V(y) the
the equalityAt =—At suffices to specify the effect of time 5jye ofp, (1) reaches a well-defined plateau value. In this

reversal on the time. If the system is externally driven at the,areay region the characteristic time scale for the evolution
time of time reversal, also all external driving forces have to¢ mesoscopic statE is much larger thar, but 7 is much
reverse direction. At the time of reversal we hdyet, . ’

: . ; larger than the typical equilibration time. The characteristic
The rationale for reversing external fluxes is that, al-gistances in microscopic phase space corresponding to sig-
though the derivation is made for a closed system, this closeificant changes i" are larger than the width of the region

system can encompass quite a lot. The distinction betweeg\/(y)_ If one considers smaller volum@s/(y), one needs to

open and closed depends on where one places the boundaiy,jger jonger times to obtain good enough statistics.

of tr_u_a system. Sln.ce we are not restricted to b(_amg close Qvhen certain ergodic properties are obeyed the plateau value
equilibrium, there is no fundamental problem with incorpo-

X : f ,t) is uniformly within the subspace correspondin

rating a large part of the external world into the system ancf Pa 7, - y P P g
R . o the mesoscopic stale

modeling it in a simple way. For example, one or more sub-
systems can behave as heat baths that are well characterized Y e o\
by one variable onlyhamely, its temperatuyelt is even Pad D) = | d¥ Punitorm( IT (1) P(%:1)
possible that a subsystem is an experimental setup. When the
time-reversal operation is applied to this subsystem the, so-
called, external driving forces are reversed.

=J dr puniform(7|r)p(rit)

=exf - S(I'(9)/ke]p(I'(y),1), (13

with the conditional probability given by E@10).

In Egs.(6) and(9) the states arising in the conditional part By means of the averaging procedure, EtB), the fluc-
and those arising in the probability-density part of the con-tuation relations, Eqsi6) and (9), remain unchanged. The
ditional probabilities densities have a subtle different meanenly difference is that after the averaging, both the initial
ing. In the conditional part, statF indicates a microstate mesostatd’, and the final statd’g imply a uniform distri-
sampled uniformly from the ensemble corresponding to mebutions of the microscopic space corresponding to these me-
sostatel". Let y be the microscopic state; then, it is distrib- sostates. After averaging the microscopic distribution is
uted according to smeared out. Therefore the dynamics of the averaged prob-

IIl. COARSE-GRAINING
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ability distribution, Eq.(13), does not conserve phase space.creases can be easily imagined. A straightforward way of
However, the consequence of the conservation of phasteoretically creating these situations is by means of the mi-
space at the underlying level still is taken into account bycroscopic time reversal of everyday eveqtaying movies
means of the detailed fluctuation relation. This is the mosbackward. Also for these situations the detailed fluctuation

important conclusion of this work. relation is obeyed. The reason that some theories can only
The microscopic dynamics leaves the Gibbs entropy depredict an increase in Gibbs entropy is ultimately a coarse
fined as level of description consistent with the detailed fluctuation
theorem.
Se(t) =- ka dy p(y,9)In p(y.t) (14)
IV. CONSISTENCY OF STOCHASTIC DIFFERENTIAL

unchanged. This is a consequence of Liouville’s theorem. EQUATIONS
When maximizing the Gibbs entropy with the constraint The fluctuation theorem as derived in this paper gives
B B restrictions on mesoscopic models. In this respect it is simi-
p(I',t) = f dy p(y,t)8('(y) -T), (15) lar to the GENERIC formalisnjl2,13. This formalism im-

poses constraints on the form of the stochastic differential
one will find thatp(y,t):= p.(¥,t) given by Eq.(13). The equationfs that can bg used to modgl mesoscopic systems. In
entropy for this locally equilibrated distribution is this section | will derive the constraints that can be derived
from the fluctuation theorem, E¢Q).
The aim is to model mesoscopic dynamics in a thermody-
S coursét) :J dI'[p(I",)S(T") — kgp(I', H)In p(I", 1], namic consistent way by means of a stochastic differential
equation
(16)

whereS(I") is given by Eq.(11). dX =A(X)dt+ det( X )i : [D(X)de(iref)}dt

The picture that arises for the dynamics of mesoscopic 9 Xret/ I X JX
models is as follows. Starting from a mesoscopic ensemble +v2D(X) - dW. (17)
described by(I") and a uniform distribution within the me- ) . i
sostate given by Eq10), the microscopic evolution leaves Here W is the Wiener process. Increments of the Wiener
the Gibbs entropy unchanged. Many microstates in the dg?rocess are normally _dlstrlbuted stochastic variables. T_he
formed mesostates are visited in a timeBecause of the Mean of an increment is zero. Increments at nonoverlapping
incompressibility of phase space, this means that the a findme intervals are statistically independent. The variance of
structure is created. This structure is not smeared out in &" increment equals the width of the time interval. This can
smooth way but becomes finer and finer when time proceed§€ summarized by
The scales on which the structure changes are too small to be (AW)=0, (AWAW) = At (18)
resolved by the resolution of the measurements of an experi-
menter or the level of description of a model builder. Theywhere the lower index is a time stamp and the increments are
do not measur@(y,t), but p,(v,t) given by Eq.(12). Be- assumed to be taken over time intervels,ti, ][AW,
cause they cannot follow the evolution in time down to the=WI(t;.;) —W(t;)]. Equation(17) should be interpreted in the
smallest scales, they continuously lose information aboulto form (see[14,15). This means that Eq17) is the limit
their system. If they were able to see the details, then thef a finite-difference scheme where the integrands are evalu-
(Gibbg entropy change during a time interval would be zeroated at the beginning of the time interval. Since a Wiener
according to Eq(14). increment is ar(isotropig Gaussian variable, al$®-AW is

If the mesoscopic states are chosen wgll(y,t) is well  a Gaussian variable which is fully specified by its variance
defined for a wide plateau of time and spatial resolution®3"-BAt. This means that there is some redundancB.irfin
[characterized by and 6V used in Eq(12)]. This causes the EQ. (17) we therefore introduce the diffusion tens@r
mesoscopic entrop$(I") to be an objective quantity and not =%BT-B, which is by construction positive symmetric.
merely be a mathematical construct. It is possible that differ- The Wiener increments model forces that fluctuate on
ent mechanisms with well-separated time scales are imposmall time scales. The coarse-graining step is to model these
tant to describe the dynamics of a system. If one wants tfluctuating as white noise and so ignoring all small time
describe the system on a certain scale, one can then introduseale correlations that exist.
an appropriate level of coarse-graining. The entropy one The form of Eq.(17) might seem somewhat extravagant,
needs to use at this level can be obtained by maximizing theecause by redefinind(X) one can write down a much
Gibbs entropy, Eq(16), valid for any of the finer scales, more compact and simple equation. However, only in the
while keeping the large scale variables fixed. form written in Eq.(17) are the quantitie®\ andD a true

The detailed fluctuation relation as it is derived in this vector and tensor in the sense that they transform in the usual
paper holds for both the microscopic reversible dynamics agay upon coordinate transformation. This is important since
well as the coarse-grained dynamics. It does therefore nah a coarse-grained description it is often not clear what the
predict the increase in Gibbs entrofgs expressed by Eq. “canonical” coordinates are. It is therefore good to use quan-
(14)]. Situations where the mesoscopic Gibbs entropy detities that have a meaning irrespective of the chosen coordi-
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nate system. In Appendix A it is demonstrated that wiAen d .
and D are required to be tensors the form as given by Eq. ;¢ p(X,+l, i+1Xi, t)r., =t = — eXBIS(Xi+2) = S(X; ) Ik}
(17) naturally appears.

To derive the constraints that the fluctuation theorem im-
poses on the coefficients of the stochastic differential equa- "
tion we look at the limittg—ta=t of Eq. (9). Note that we (19)
should use this form and not E(5) because stochastic dif-
ferential equations are only well defined for integration for-Here the minus sign arises becauste At”.
ward in time. In this limit the first-order term of the expan-  The conditional probability distribution of the stochastic
sion of the conditional probability in the small varialile,  variableX obeys the Fokker-Planck equatisee Appendix
-t inserted in Eq(9) gives A)

i |+1)t l—t

Xis1s Xiot;
c7t,+1p( i+1 |+l| i )

d d x+1)
== ' AX-+, X'+1'+ X'a' _DX'+ X'+a'+ X-,- | X+7+X1 +1 =V.
X { (Xis1 )PXKis 1, b1 X5, 1) = DK PKisn, g X, 1) - 07X|+1[ N p(Xis1,tise X, ) nde(ﬂxref }} 0

(20)

Because the coefficients are time-translation invariant, also e 011 X
the conditional probabilities are time-translation invariant: ~ A(X) =A™®(X) + D(X) - ——1 . —S(X) +Inde :
dX | kg A Xief
(23

. J ook x Lk

s tivn) = = Rp(xi X ti) . (22)
i+l i The A™(X) term models the reversible part of the motion.

This last time derivative obeys E(0) with all appearances This reversibility is apparent from the behavior when apply-

of X4, replaced bef and X; replaced beTﬂ (but Xt ing the time-reversal operator. The requirements that follow

remains unchangéedThe equalities for the two time deriva- from Eg.(22) for this component of the motion are

tives can be inserted into E(L9). This will give constraints .

on the allowed forms for the tensofsandD. The determi- AY(X) = - IxX AY(X)

nation of these constraints is complicated by the fact that the aX '

conditional probability fort;,;=t; is a § function. A straight-

forward procedure to determine the constraints is to multiply J

both sides of the equality, Eq19), by g(X;)exg S(X;)/kg] — {exgd S(X)/kg]A™(X)} = 0. (24)

and integrate over the variabl¢ . By means of integration 2

by parts and the use of E¢7) we find that

According to the second equality the Gibbs entropy is not
X increased due to the reversible term. If one follows the time
IX ot evolution of an ensemble of nearby mesoscopic states, an
re

{g(X)exp{S(X)/kB][A(X) D(X) - —In d t<
ax ) . ; )
increase in entrop®(X) due to this term is compensated for

d by a decrease in volume of the ensemf@ed thus an in-
(X) -&—x(g(x)ex;[S(X)/kB])} c?lease in the probability densjtyThe netc?esult is that the
total microscopic phase-space volume corresponding to the
=_ exp[S(X)/kB]{ &g(x) {A(X ) mesoscopic space is unchanged.
The second part in Eq23) is the irreversible part. This
( axX )} part scales as
ax *
y ! AT(X) = % CAT(X), (25)
v (oo 28 >>} o)
which is related to the relation
The requirement that this equality hold for any functgiix) . -
results in the relations given below. First, one can decompose D(X") = _X D(X) - IX _ (26)
A(X) as axX
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If one inserts Eq(23) into Eq.(17), one will find that the V. MESOSCOPIC SIMULATIONS
part that refers toX,s cancels. This gives the most general

expression for a “thermodynamically consistent” stochastic As shown in the previous section stochastic differential
Xp . . y y equations that describe nonequilibrium processes can always
differential equation

be split into a reversible and an irreversible part. A numerical
dX = A™Y(X)dt + exd - S(X)/k solution for a single time step of the full problem can be
) A= SX)/ke] formed by first considering the purely reversible and the
purely irreversible problems individuallyby putting the
other term to zerp An approximation to the full problem can
then be found by combining the partial solutions using a

« j_x A{D(X)exd S(X)/kg}dt+ 2D(X) - dW

= A™Y(X)dt + iD(X) ) iS(X)dH 9. D(X)dt Trotter expansiomor a_higher-or_der expansipnJsually the
kg aX axX construction of numerical solutions to the subproblems con-
N \F(X) AW 27) cerns further splitting and Trotter expansion.

The fluctuation theorem such as expressed in(Bgcan
Any choice forX,. gives the same final result. In view of be very helpful in creating good numerical approximations to

expression27) a particular convenient choice of reference isthe subproblems. The reason is that it is expressed for finite
the one that obeys time differences. If one makes sure that the subproblems

obey the fluctuation theorem, then by construction the full
9 Xref numerical solution also obeys the theorem.
def — = | = C exd S(X)/kg]. (28) For a purely reversible process one finds that

X
P, tia| T, 1) g = (I G, Ha ) ST

This means that any unit volume X, corresponds to a
fixed volume in microscopic phase space. For this choice the (31

irreversible term in Eq(23) is zero. This shows that the There is a one-on-one relation between the initial and final
irreversible part can be viewed upon as an apparent contrisaes This means that the conditional probabilities are al-

bution rather than a physical driving force. It expresses th‘\:vvays sfunction like. The volume of the mesoscopic phase
fact that an “unnatural” reference state is us€this is a space need not be conserved. Combining Bd) with the
little bit similar as trying to describe the dynamics of a sys-¢,ctuation theorem, Eq9), one finds that

tem using rotating coordinate systejSor the choice made

in Eqg. (28) the contribution disappears and the notion of O 1exd ST = oCexd STy ; (32
volume is directly inherited from the underlying microscopic .

. . . . i.e., the underlying microscopic phase-space volume should
space. Using the notation developed in Appendix A, @9) not change. This is the discrete equivalent of the second
can be compactly rewritten as

relation in Eq.(24).

dX = A™V(X)dt + {exg S(X)/kg]2D(X)} For a purely irreversible process,
o {ex S(X)/ks]V2D(X)} 2 - dW. (29) P (L tiaa Ui t) = P (T g, | T 1) A9 T /9 D).
(33
This result can be obtained by inserting E&8) into Eq. L _ .
(A8). Combining Eq.(33) with Eq. (9) gives
The change of the mesoscopic level Gibbs entropy is P(Ciyp tiva| Tt
i L = expl[S(ay) - ST Vks). (34
given by O (T, €Ty ) P[S(Tis) = ST))/Ket.  (34)
For the derivation of Eqg32) and(34) we made use of Eq.

d
a&;,coarse_f dx p(X,t)D. 3).

p p In the case of the molecular dynamics simulat{ohthe
X(—[S— keln p(X,t)]——=[S- kgln p(X,t)]). N-V-E ensemblg there is no entropy. The dynamics obeys
axX X Egs.(31) and(32) for this special case. A widely used inte-
(30) grator is the Verlet algorithm. Its success is usually explained
by the fact that it is both time reversible and it conserves
Herep(X,t) is the probability density to be in stapgX,t) at  phase-space volumil6]. These are exactly the properties
time t. As discussed above the increase of entropy is a corthat have to be obeyed according to the fluctuation theorem
sequence of coarse-graining. In the case of the stochastior purely reversible motion.
differential equation processes with very small characteristic In the case of a microscopic system in contact with a heat
time scales are not resolved. They are modeled as procesdegath the total entropy equals the entropy of the bath:
with zero correlation time by means of white noise. The e
unresolved correlations integrated over a larger tinggve S =S~ BT, (39
rise to the diffusion tensor. This diffusion tensor plays awhereE is the energy of the system aifidhe temperature of
prominent role in the expression for the entropy productionthe heat bath. Coarse-grained techniques such as dissipative
Eq. (30). particle dynamic§DPD) also consider a system in contact
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with a heat bathbut without further internal entropyThe For models that are not only in contact with a heat bath
most distinct feature of DPD is that it conserves momentumbut also have internal entropy the detailed balance condition
i.e., it is Galilean invariant. The equation of change for thecan be easily generalized by using E84). The first step is

momentum of particlé is the generation of a trial move according to some probability
c — density. The next step is the acceptation step where a move is
dp;=|fi - 2 yoo(rj) - vj; |dt+ 2 V2kgT yeo(rj) - dWjj, accepted or rejected with a certain probability. The total con-
] ) ditional probability is
(36) — trial
P(TqT) = PEI g [T (g | T) (39

where the indice§ indicate a pair of particles. The first term
on the right-hand side is the conservative force which con¥Vhen one chooses
stitutes the reversible part of the motion. The last two terms
are the dissipative and fluctuating terms that constitute the PAI 4T = min(l
irreversible part. The full equation is in accordance with Eq.
(27). The irreversible part can be split down to individual Eq. (34) is obeyed.
pair interactions. The numerical approximation for this part This scheme can also be used to generate thermodynami-
only considers the change in momentum of the two particlegally consistent discretizations for the irreversible part of the
in a pairi and j. All the momenta of the other particles dynamical equatiori27). To generate such a scheme one has
remain unchanged, and the positions of all particles includto ensure that one generates a stochastic trial step with the
ing those ofi andj do not change. Therefore only the kinetic correct variancgfor the limit At— 0). For small enough time
contribution to the energy in E¢35) changes. The require- steps the stochastic term in the differential equation is always
ment(34) now reduces to dominant. Also for small enough time step¥°will be very
@.Fipp1) close to one. This means that E40) gives a perturbation on
PP PiIPPy) exp— [(p? - pA)/2m; + (B2 - p?)/2m |/ks T}, the stochastic step. As we have shown in Sec. IV the fluc-
P(piypj|5i-5j) C b : tuation theorem applied to the irreversible part results in the
(37) (irreversiblg deterministic term in Eq(27). Therefore appli-

_ o _ cation of Eq.(40), which obeys the fluctuation theorem ap-
where the tildes indicate the new values. If one requires thgjied to purely irreversible motion, will result in a perturba-
the individual interactions conserve momentum—i®+p;  tion on the stochastic part that in the linit— 0 is equal to
=p;+p;—one finds that Eq(37) is obeyed for the deterministic term in Eq27).

A N Py Therefore, generating a trial move with the correct vari-
P(®:.Bilpr.py) expi [(Vi+a®-P) ance and applying the generalized Metropolis scheme gives a
—a(p; - ) 144uksT}, (38)  valid discretization of the irreversible part of a thermody-

- duced fihe t ficl — namically consistent stochastic differential equation. More-
with . the reduced mass of the two-particle system{IIl, 1 the discretization itself is also thermodynamically con-
| developed a DPD discretization that is consistent with Eqsistent

(38) using a different reasoning. This scheme was shown to One can think of a wide variety of ways of generating

be superior to other discretization schemes, especially fof'rial moves. Acceptance rates can be increased by introduc-

determining equilibrium properties. ing biasing. Everything is allowed as long as the variance of

H Thﬁ re_zvers_llgl_e part OftEO!{(?’tG()j can be derlvtehd frolm a ?tochastic part is correct up t9(At). If one uses more ad-

amiitonian. 1his means that it does preserve tne volume of, .o discretizationte.g., with a predictor step or partly
phase space and energy. Since the entropy of the heat batkhjﬁ
a function of energy via Eq35), this is consistent with Eq.
(24). The use of the Verlet algorithm seems to be a goo
choi_ce to solve the reversible part. However,_ in the dis- A. Time discretization
cretlzed_ case round-off errors are present. This means that The matter of time step dependence raises some important
energy is not exactly conserved. Therefore the entropy does

change. Since the Verlet algorithm does rigorously obey conSSues that have to be considered. When investigating a

servation of phase-space volume, [E8R) is not rigorously f)'fmé) le EUIeéggrvwvﬁ‘lr?ir?d'sfggi'ﬁg:'os?ng{l ttri]r?]elrrst\éersSI:)fE E?Orfs
obeyed for the numerical solution. It turns out that this de- g. (27 P

viation is the dominant discretization error at finite time Step;Zr\]/?/SitsIC;?c;)nolr?icr)?ll;ﬂ(ﬁigfertg(l-:‘ag;?r%s;tg:;nc;?e;i?iet?rrnrg. ;I]I’(;CE
V 1

ptrial(Fi |Fi+1)e—S(Fi)/kB
’ ptria|(Fi+1|Fi)e—S(Fi+1)/kB

) . (40

plicit), then also the computation of the trial probability
Odensities will become more computationally expensive.

see[17]. .
In the case of Monte Carlo simulatiorsf the N-v-T  the stochastic term become comparable for
ensemblgone is not interested in the dynamics but only in At = K3(|D||a Sa X[H)L. (42)

the equilibrium statistics. In this case one has a lot of free- .

dom to construct conditional probabilities. The only condi- This corresponds to a displacement

tion that has to be obeyed is E@4) with Eq. (35) inserted. 1 DAL ~ -1

This gives the ordinary detailed balance condition. A AX~k\|DJAt~ [0S0 X (42)
straightforward way to achieve this is by means of the Me-For such a displacement the change in entropy during one
tropolis procedure. time step is of the order dfs.
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When increasing the time step still further the stochastiosersibility and Liouville’s theorem. If one assumes local
term becomes small compared to the deterministic term. Iequilibrium—i.e., fast degrees of freedom are in equilibrium
on the corresponding length scales the variation in the emand slow variables can be far from equilibrium—the detailed
tropy gradientand in the diffusioiis small, a Euler discreti- fluctuation theorem remains valid. This means that we have a
zation of Eq.(27) using this large time step is still an accu- relation that is valid far a large class of far-from-equilibrium

rate approximation. This is the case when models.. This is_especially valuable for the application to me-
soscopic situations.
aS|? #*S Most of the literature on the fluctuation theorem has a
aX > kg aXaX|" (43) dynamical-systems point of perspective. The program seems

to be to characterize nonequilibrium stationary states—e.g.,

This can be considered a far-from-equilibrium condition. If it by means of the Sinai-Rowen-Bow¢BRB) measure—and
is obeyed, fluctuations are negligible compared to the irreuse its properties to derive relations such as the stationary-
versible deterministic terms for large enough time steps. If itstate fluctuation theoreiib]. Systems that are considered are
is not obeyed, the system is in the mesoscopic regime. Hetgypically deterministic dissipative systems.
significant changes occur on time scales smaller than that The entropy production is defined as minus the phase-
given by Eq.(41) or, equivalently, for entropy changes of the space contraction rate. The change of phase-space volume is
order ofkg. Fluctuations always play a dominant role andinversely proportional to the probability density of a state
cannot be neglected even if one considers longer time scalei§acked in time. When introducing the entropy change as an

Equation(29) is an alternative formulation of E¢27). A integral over time of the entropy production rate, the detailed

straightforward discretizatiotof the irreversible pajtis fluctuation theorem, Eq6), is obeyed.
In Appendix B, | show how to derive the steady-state
AXpred= V2D(X) - AW fluctuation theorem from the detailed fluctuation theorem by
making some ergodic assumptions. A feature of this deriva-
AX = exp{S([X + Xpred/2)/kg}2D ([ X + Xpredl/2) tion is that detailed knowledge of the stationary statech
— as an assumed SRB meagui® not needed. On the other
X{exg S(X)/kg]V2D(X)}~* - AW. (44 hand, if a stationary state can be shown to have a SRB mea-

(The discretized equation does not obey the detailed fluctug|re. this should be consistent with the stationary-state fluc-
tion theorem). An advantage of this discretization is that no tUation theorem. The existence of a SRB measure is, how-
derivatives need to be determined. It is, however, only £V€r, not a prerequisite for the theorem to be valid. In the

good approximation for time steps smaller than that given byf@Se of, for example, a system described by a stochastic dif-
Eq. (41). The deterministic term arises as a perturbation oferential equation the stationary dlstnt_)unon is not .expe.cted

the stochastic term. If, however, the time step is too large, thi&® b€ & SRB measure but the fluctuation theorem is valid.

deterministic term can no longer be treated as a perturbation. 1€ derivation given in this paper is essentially the same
Similar conclusions can be drawn for the thermodynami-2S the one given by Maes and N&ny [8], but less formal.
cally consistent schemes given above. The correct equilibl '€ Same expression was also derived before by Jarzynski

rium statistics will be sampled for any chosen time step. Thid 9] although he considered a special case—namely, a micro-

does not mean that the schemes yield a satisfactory discre§SOPIC System in contact with one or more heat baths. The
zation for any finiteAt. The reason is that dynamical prop- Main contrybuuon of the present paper is that it demonstrates
erties will be time step dependent. the link with mesoscopic theories such as the GENERIC

For example, in the DPD scheme the typical velocity re-formalism[12,13.

laxation time(for a dense enough fluids m/y. Since the In Sec. IV, | showed the constraints the detailed fluctua-
deviation of the particle velocity from the center-of-mass ve-tion theorem imposes on the form of stochastic differential
i e. €quations. As a starting point | used the general stochastic

locity of a blob is of the order of the thermal velocity—i.e., ©: , ; : . ; 4>
vin=ksT/m—the self-diffusion coefficient in space is pro- differential equation written in the generalized kinetic form
portional to v2m/y=kT/y. When time steps are chosen deVeloped in Appendix A. It is interesting to note that this
larger than the characteristic time, the particle velocity reform is dictated by the fact that the primary variables in the
laxes almost completely within one time stap. Therefore stochastic differential equation are taken to be .tenS(erl,

| they behave well upon coordinate transformatiorhe fact

the self-diffusion found in the simulation will be proportiona ) , , )
to UchAt- This is larger than the true self-diffusion. that this form is found to be most suitable for physical theo-

In the case of the generalized Metropolis scheme a reje(,r-'es IS a consequence of this obsgrvaﬂon. :
tion means that a dynamical variable is not updated during | N€ irreversible part of the motion of E(7) is exactly
the current time step. Many rejections cause the dynamics %: the form given by the GENERIC formalism. Up to now
the simulated system to slow down. This happens when erthe form was motivated by reference to the fluctuation-

tropy changes during a time step are comparable or largdfiSSiPation theorentof the second kind[18]. In the present
thanks—i.e., for time steps larger than the one in E4). paper it was proved that, as long as the local equilibrium
assumption holds, the irreversible part is of the form de-

scribed by Eq(27).
Ottinger and Grmela assume that the reversible phase-
In this paper | derived a detailed fluctuation theorem. Thespace velocityA™" is perpendicular to the entropy gradient.
main ingredients for the derivation are microscopic time re-This is consistent with Eq.24) for the case tha#/dX-A™Y

VI. DISCUSSION
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=0. However, due to the transformation behavior of the enuse of the detailed fluctuation theorem ensures that the
tropy, Eq.(3), Eq.(24) is valid in any coordinate frame, but schemes are thermodynamically consistent. It was noted in
the orthogonality ofA™ and the entropy flux is not. IfiL8] Sec. V A that this is not necessarily equivalent to higher

de Pablo and Ottinger realize this and redefine the entropy acuracy. In situations far from equilibrium, systematic irre-

versible driving forces due to entropy gradients are dominant
compared to thermal fluctuations. In this case imposing ther-
modynamically consistency usually inversely affects the

simulation accuracy of the dynamical behavior.

This redefined entropy transforms as a scalar. Therefore the

PO = QX — &f)
SFPAX) = S(X) - kgln det( ) (45)

orthogonality condition can be maintained when changing ACKNOWLEDGMENT
coordinates. To be consistent with §@4), A™" should be
incompressible foX,sr. The redefinition, Eq(45), however, The research of Dr. Peters has been made possible by the

has a few consequences that are not taken into account coReyal Netherlands Academy of Arts and Sciences.
sistently in[18]. In expressions such as Ed0), S(X) is the
proper entrc_)py to be used in thg normalizatic_m factor for the AppENDIX A A GENERALIZATION OF THE KINETIC
microcanonical ensemble, ntf)i_J AX). Ne;xt, in Eqg. (23), STOCHASTIC INTEGRAL
SPAX) can be directly substituted. This has as a conse-
guence that in the final expression of the stochastic differen- In this appendix we will investigate what the general form
tial equation a term referring to the reference state, as in Epf a stochastic differential equation is when one requires that
(A6), appears. This means that, when ussigAX), the gen-  the primary variables in the equation be tensor quantities.
eral form of the stochastic differential equation has an extr&onsider the simple stochastic differential equation
term compared to the proposed GENERIC form. Last, also -
the expression for the Gibbs entropy, Ef6), acquires an dX =A(X)dt+ C(X)dt+ y2D(X) - dW (A1)
extra term.

One has to conclude that in the GENERIC formalism a@nd interpret this equation in the Ito forfi4,15. Here the

preferred coordinate system is used. It is implicitly assumed€ctor notation and dot product are just used as a shorthand
that there is namesoscopicphase-space contraction due to fOF @n index notation. Let us require thatX) andD(X) are
reversible motion. This excludes the treatment of problemd€nsor quantities. This means that upon coordinate transfor-
that are deterministic, reversible, and dissipative, such as tHationX— X/,

Slodd system that was so important in the development of ,

the fluctuation theorentsee Appendix & | therefore pro- A/(X') = X AX),

pose to use the entropy definition as proposed in this paper axX

and take for granted that it does not transform as a usual

scalar quantity. X! ((9X,)T

The GENERIC formalism poses a more restrictive form D'(X") = X -D(X) -

X (A2)

on the reversible motion than is found in the present paper—
namely, a Poisson structure. The fact that | do not find this is . .

because | did not consider the detailed structure of the m?—JSIng Ito caleulug14,19 one finds that EqAL) transforms
croscopic dynamics. The only part that was used was Liou-

ville’s theorem. It is in fact not proved from first principles X’ 231

that the reversible part has to have a Poisson strugtiiel dX’' = —— [AX) + C(X)]dt + :D(X)dt
suspect that it cannot be proved. | think that the Poisson IxX IXIX

structure only holds for special choices of the mesoscopic aX' aX'\T

variables. Once a good choice for the mesoscopic variables is + \/ZW -D(X) - (W) -dW. (A3)
made, any coordinate transformation of the mesoscopic

space will leave the structure invariant. Probably this choicerpig gives forC(X) the transformation rule

of variables is usually the natural choice to make. The obser-

vation that mosi{maybe alj known macroscopic equations ax’' PX!

are consistent with this structuf&2,13 is explained by this. C'(X")= X -C(X) + X aX:D(X)' (A4)

A fundamental proof is needed.
Since the form we propose in this paper is less restrictivey -hqice forC(X)

. o that obeys this transformation rule is
than the GENERIC form, it has less predictive power. When

using the GENERIC form, however, one should keep in 0o 0 X
mind that the extra structure has not been proved from first C(X)= de(—re)— . D(X)de( ) . (A5)
principles. aX /X 9 Xref

Besides the fact that the detailed fluctuation theorem im- ~ )
poses constraints on the form mesoscopic and macroscogi® @ny otherC(X) that obeys Eq.(A4) the difference
equations can have, it can also be used to create numeric@(X)—C(X) scales as a vector and can therefore be included
approximations. In Sec. V, | gave some examples of this. The A(X). The full expression for Eqi/A1) becomes
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axX \ g 9 X et APPENDIX B: DERIVATION OF THE STATIONARY
dX =A(X)dt+de P X D(X)det —_= | |dt FLUCTUATION THEOREM
ref
— The stationary fluctuation theorem is a consequence of the
+V2D(X) - dW. (A6) y d

detailed fluctuation theorem applied to stationary states of
The importance of this equation is that both quantifiéX)  driven systems. It is valid for long times only. Some ergod-
andD(X) are tensors. This is different from the ordinary Ito iCity properties have to be obeyed for it to apply.
form, Eq.(A1), with C(X)=0. In physical theories one usu- The s}andard example used is a system of interacting par-
ally uses tensorial quantities, since this guarantees indepefi¢les driven by a shear flow. The equations of motion used
dence of the coordinate system. Therefore equations of tHd€ the Sllod equationso named because of its close rela-
form of Eq.(A6) appear naturally in applications. tionship to the Dolls tensor algorithm

The occurrence of the reference coordingtg might be a Xi=pi+Wie. Pi=Fi-yyiec— ap. (B1)
surprise to some. If one uses the expression, (B§), for o ) . o )
C(X) a change in referenceX, gives a contribution to This is Newton’s equation for the particles with interparticle
A(X). To understand the role of the reference it is useful tdOrces, but expressed using so-called peculiar momenta. The

investigate the Fokker-Planck equation corresponding to EqPeculiar momentum is defined by means of the relative ve-
(AB): ocity with respect to the applied shear, with shear rate

The driven system is thermostated by means of a Gaussian
thermostat. This can be done by determinin@as a function

of all coordinatessuch that either the internal energy or the
)H kinetic energy remains constant. In both cases the kinetic

J J
—p(X,t) + — - AX,H)p(X,t) = D(X,t)p(X,t
2P0 ax{( )p(X,t) = DX, t)p(X,1)
0. (A7) energy is defined using the peculiar mome(ita., locally
with respect to the applied flow

The system of equations is reversible, but phase-space

FroLn g.‘ll.f forbm on(ex()::n(zie/;;at)fetx):? S]e. eq;']“bt”um volume is not conserved. Here by reversible we mean that
probability 0beysp € ref) =CONSL. USING the trans- -y, trajectories are traced back when both momenta and the

formation rules fo_r probability depsities this_ corresponds tofiriving force ¥ are reversed.

p(X,e) =const. This means that, in a nondriven system, al The phase-space contraction is

unit volumes defined by means of the coordinaXgs are

equally likely to be visited. o= - . T=- 9 a9 B2
Equation(A6) can also be written as olke aT EI" X X ap P (B2)

J X
><_
ax[ln p(X,t) +In de<ax

ref

dX = A(X)dt + {de<%>2D(x)} The assumption that the system is an approximate descrip-
axX tion of some underlying microscopic system induces an en-
JX -1 tropy definition. Since the equations of motion are reversible,
o [det(_f“) \’2D(X)] . dW. (A8) the total underlying microscopic phase-space volume should
I X not change during the time evolution of the system. This
It is a generalization of the kinetic integrgl9]. Theo sym- ~ Means that the entropy should be such haexp(S/kg) is
bol indicates the Stratonovich dot product. It here denote§onstant in time. Her&V is the volume of adeforming
that, in a finite-difference approximation, the part to the leftn€ighborhood around a point in phase space. This implies the
of the dot should be evaluated centrally. The part to the righfl€finition

of the dot should be evaluated at the initial point of a time ds
interval. Thus an equation @ (B3)

dX=1(X) - g(X)dW (A9) Since the entropy cannot be expressed in terms of the phase-
is the limit to At— 0O of space coordinates, it should be introduced as extra state vari-

able. With Eq.(B3) to supplement the equations of motion
X(tisg) = X(t) + l[f(x(ti)) +f(X(tis)] the full equations obey the conditions for reversible motion
2 as stated in Sec. IV.
X gOX(t)) [W(tis 1) — WIE) ] (A10) When applying a constant shear the evolution of the sys-

tem, Eqg.(B2), will ultimately reach a stationary state. Note

Expanding this expression fdi() aroundX; and using the that the notion of stationarity always assumes some level of
fact that AW?— At one can write down the equivalent Ito coarse-graining. In the case of microscopic incompressible
form. Doing this exercise for EA8) shows it is equivalent motion the phase-space density keeps evolving and never
to Eqg. (A6). approaches an attractor. Coarse-graining by means of time

From a numerical point of view interpretatigA8) can be  and spatial averaging combined with ergodic properties are
convenient since no evaluation of gradients is needed. Funecessary to define stationgand equilibrium states. In the
thermore, different evaluations of the midpoint term give thecase of deterministic systems like the Sllod equations the
same result in th&t— 0 limit. A particular practical evalu- equations are already coarse grained to some degree. Since
ation is to use a predictor-corrector algorithm. on average the phase-space contraction will be larger than
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zero, the phase-space density will converge toward a strangeill become independent of the initial and final states:
attractor.

One can conclude that, for deterministic equations such as
the Sllod equations, an entropy can always be determined by
means of Eq(B3). This entropy is such that the associated
microscopic phase-space volume is a constant of the motion
or, equivalently, that the generalized Gibbs entropy, (&), lim p(g, At|Ta) = p;(T'g). (B8)
is conserved. An entropy that is consistent with the conser- At—oo
vation of microscopic phase space for reversible motion

causes the detailed fluctuation theorem as introduced in thig, . choosel", andTs to be part if the attractoand there-

paper to be valid. * *
The detailed fluctuation theorem leads to the stationar;zﬁ;%\(?‘rsl;%ggrf(g*gh:r:tggg;%rrgf the reversed progess
Y Y A )

fluctuation theorem. When applying the detailed fluctuation - .
X S In the limit manyAt— oo terms in Eq.(B7) become con-
theorem, Eq(9), to the extended set of variables this gives stant. Dividing both sides byt and using the limiting be-

. havior as given by Eq(B8) gives the stationary fluctuation
Py(L's, Sp.te|T'a Saita) = €XH (Sg — Sp)/kg] theorem

X Py (M Su talT5, Se te) - a0
1 Ao, At o
(B4) lim 222 o (B9)
A=At par(-o,At) kg

lim p‘y(aAﬂFB,FA) = py(EAt),
At—co

Note that we labeled the probability densities by means of
the driving force. In the time-reversed case also the drivingHere we used thadr =-0+(Sy—-S,)/At. Note that in the

force is time reversed. In the case of deterministic equationgenominator still the reversed shear ratés used. However,
such as the Sllod equations the conditional properties are & the stationary situation one expects that the probability to
o-function like. ) find a certain entropy production does not depend on the
We will assume that the states in E@B4) are coarse gjrection of the stationary shear rate. Therefgfecan be
grained to such an extent that stationarity is defined in 3eplaced byy. With this substitution Eq(B9) becomes the
nonpathological way. Note that this is not strictly the case folamouys fluctuation theorem. It states that for large times
deterministic systems like the Slodd equations. This will bepositive entropy production is exponentially more likely than

discussed below. o o negative entropy production.
In the stationary state only relative differences in time and Eqor 3 deterministic system, such as the Slodd system, the
entropy are important, so analysis as outlined above has some weak points. All condi-

tional probabilities ares-function like. The attractoKif it
1 _ exist9 will be a fractal. EquatioriB8) is not valid since there
P;(Tg, S, te|T'as Sata) = A—tpy(FB,U,AﬂFA), (B5  is always a one-on-one correspondence between initial and
final states. This problem in the analysis can be resolved by
- looking at such a deterministic system on a somewhat
whereo is the mean entropy producti@f;~Sa)/At. We can  coarser level. From this point of view a state denoted’by
rewrite this conditional probability as includes a small neighborhood. If one then assumes a strong
dependency on initial conditions—i.e., a chaotic hypothesis
_ — —n (= _ [4]—points that start out near each other will end up in very
P(T'e, 0, AUT) = py (o, AT, TWP;(Te, ATIT). (BE) different points in phase space. Therefore EBg) will be
valid. In numerical experiments the coarse-graining usually
This means that the conditional probability dgnsity to end upoccurs becausp-y(F, At) is determined using a finite resolu-
in stateB and have a mean entropy productierequals the  tion (by means of binning
probability density to have an entropy productiefior paths Recently it has been shown that the stationary fluctuation
that are known to end up in sta times the probability theorem is not valid for many systenig0-23. A simple
density that the path indeeds ends up in sBat&Vhen sub-  example is a Brownian particle dragged through a fluid by
stituting the relations outlined above into EB‘]’) and taking means of Optica| tweezers. As demonstratecuza], in the

the logarithm on both sides one finds that case of the Brownian particle, the stationary fluctuation theo-
rem holds for the work but not for the entropy. The point

py(;’ At|Tg, T py(T'g, At|T,) where the current derivation breal_<s dowr_1 for this example is

— —— - . Eqg.(B8). In the case of the Brownian patrticle, the work done

py (0, AtllA )  py(TaAtTg) on the system over a long time becomes statistically inde-
= TAt/Kg + (S - S*A)/kB- (B7) pendent of the initial and final positions. The entropy differ-

ence, however, is the work minus the potential energy differ-
The reason to make this splitting is then, wheris larger  ence of the optical trap. Since this energy difference is
than a few correlation times, the conditional probabilitiesdependent on the initial and final positions, the first limit in
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Eg. (B8) is not valid. If one uses the work instead of the grained levelo indeed gives the Gibbs entropy production
entropy as extra variable, besides the position of the Brownfor long times.
ian particle, in the conditional probability, the limits of Eq.  Note that the stationary fluctuation theorem seems to im-
(B8) are allowed. ply the second law of thermo-dynamics for large tingest

For a reversible system, like the Slodd system, the Gibbsalso deviations for smaller timgsWNe earlier found that the
entropy remains constant. In E(L6) the first term will in-  transient fluctuation theorem itself does not imply a direction
crease with time. However, the probability density obtainsof the entropy production. The fact that the stationary state
more and more fine structure as time proceeds. Therefore thkictuation theorem derived here predicts a entropy produc-
pInp term will give a negative contribution to the Gibbs tion that is positive on average depends on the assumptions
entropy. This means that the two contributions cancel out. Iinade. The main assumption is that a stationary state exists.
one looks on a coarser level, this process stops when th®uch state can only be defined if one looks to a system on a
small scales can no longer be resolved. On this coarsesomewhat coarse-grained level.
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